Skip to main content
Log in

Biotic resistance of impact: a native predator (Chaoborus) influences the impact of an invasive predator (Bythotrephes) in temperate lakes

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Introduced predators have caused some of the largest documented impacts of non-native species. Interactions among predators can have complex effects, leading to both synergistic and antagonistic outcomes. Complex interactions with native predators could play an important role in mediating the impact of non-native predators. We explore the role of the native predator context on the effect of the introduced predatory cladoceran Bythotrephes longimanus. While post-invasion impacts have been well described, studies have largely ignored the role of native predators. We used a field mesocosm experiment to determine whether Bythotrephes’ impact on prey communities is influenced by the presence of the ubiquitous native predatory insect larvae Chaoborus. The two predators exhibited niche complementarity as no change in total zooplankton prey abundance was detected across predator treatments. Rather, copepod abundances increased with decreasing abundances of Chaoborus, while cladocerans decreased with increasing abundances of Bythotrephes. Thus, the replacement of Chaoborus with Bythotrephes led to changes in the overall community structure of the zooplankton prey, but had little effect on prey total abundance. More interestingly, we found evidence of biotic resistance of impact, that is, the impact of Bythotrephes on the cladoceran community was altered when the two predators co-occurred. Specifically, the predation effect of Bythotrephes was more restricted to the shallower regions of the water column in the presence of Chaoborus, leading to a reduced impact on deeper dwelling prey taxa. Overall, our results demonstrate that the native predator context is important when trying to understand the effect of non-native predators and that variation in native predator abundances and assemblages could explain variation in impact across invaded habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anson JR, Dickman CR (2013) Behavioral responses of native prey to disparate predators: naiveté and predator recognition. Oecologia 171:367–377

    PubMed  Google Scholar 

  • Audzijonytė A, Väinölä R (2005) Diversity and distributions of circumpolar fresh- and brackish-water Mysis (Crustacea: Mysida): descriptions of M. relicta Lovén, 1862, M. salemaai n. sp., M. segerstralei n. sp. and M. diluviana n. sp., based on molecular and morphological characters. Hydrobiologia 544:89–141

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Google Scholar 

  • Beisner BE, Ives AR, Carpenter SR (2003) The effects of an exotic fish invasion on the prey communities of two lakes. J Anim Ecol 72:331–342

    Google Scholar 

  • Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958

    PubMed  CAS  Google Scholar 

  • Boudreau SA, Yan ND (2003) The differing crustacean zooplankton communities of Canadian Shield lakes with and without the nonindigenous zooplanktivore Bythotrephes longimanus. Can J Fish Aquat Sci 60:1307–1313

    Google Scholar 

  • Branstrator DK, Brown ME, Shannon LJ, Thabes M, Heimgartner K (2006) Range expansion of Bythotrephes longimanus in North America: evaluating habitat characteristics in the spread of an exotic zooplankter. Biol Invasions 8:1367–1379

    Google Scholar 

  • Cairns A, Yan ND, Weisz E, Petruniak J, Hoare J (2007) Operationalizing CAISN Project 1.V Technical Report #2: the large, inland lake, Bythotrephes survey—Limnology, Database Design, and Presence of Bythotrephes in 311 south-central Ontario Lakes. Technical report prepared for the Canadian Aquatic Invasive Species Network

  • Courchamp F, Chapuis J-L, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78:347–383

    PubMed  Google Scholar 

  • Cox JG, Lima SL (2006) Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680

    PubMed  Google Scholar 

  • Dumitru C, Sprules WG, Yan ND (2001) Impact of Bythotrephes longimanus on zooplankton assemblages of Harp Lake, Canada: and assessment based on predator consumption and prey production. Freshw Biol 46:241–251

    Google Scholar 

  • Dunlop-Hayden KL, Rehage JS (2011) Antipredator behaviour and cue recognition by multiple Everglades prey to a novel cichlid predator. Behaviour 148:795–823

    Google Scholar 

  • EDDMapS (2016) early detection and distribution mapping system. The University of Georgia—Center for Invasive Species and Ecosystem Health. Available online at http://www.eddmaps.org/. Last accessed 5 Mar 2016

  • Edgington ES, Onghena P (2007) Randomization tests, 4th edn. Chapman & Hall, London

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Foster SE, Sprules WG (2009) Effects of the Bythotrephes invasion on native predatory invertebrates. Limnol Oceanogr 54:757–769

    Google Scholar 

  • Harrington LA, Harrington AL, Yamaguchi N, Thom MD, Ferreras P, Windham TR, Macdonald DW (2009) The impact of native competitors on an alien invasive: temporal niche shifts to avoid interspecific aggression? Ecology 90:1207–1216

    PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westsfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    PubMed  Google Scholar 

  • Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vilà M (2013) Bias and error in understanding plan invasion impacts. Trends Ecol Evol (in press)

  • Ives AR, Cardinale BJ, Snyder WE (2005) A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol Lett 8:102–116

    Google Scholar 

  • Jokela A (2013) Factors mediating the distribution and impact of the non-native invertebrate predator Bythotrephes longimanus. Dissertation, Queen’s University, Kingston, Ontario, Canada

  • Jokela A, Arnott SE, Beisner BE (2011) Patterns of Bythotrephes longimanus distribution relative to native macroinvertebrates and zooplankton prey. Biol Invasions 13:2573–2594

    Google Scholar 

  • Jokela A, Arnott SE, Beisner BE (2013) Influence of light on the foraging impact of an introduced predatory cladoceran, Bythotrephes longimanus. Freshw Biol 58:1946–1957

    Google Scholar 

  • Kats LB, Ferrer RP (2003) Alien predators and amphibian declines; review of two decades of science and the transition to conservation. Divers Distrib 9:99–110

    Google Scholar 

  • Kerfoot CW, Yousef F, Hobmeier MM, Maki RP, Jarnagin ST, Churchill JH (2011) Temperature, recreational fishing and diapause egg connections: dispersal of spiny water fleas (Bythotrephes longimanus). Biol Invasions 13:2513–2531

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    PubMed  Google Scholar 

  • Lehman JT, Caceres CE (1993) Food-web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan. Limnol Oceanogr 38:879–891

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

    Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Google Scholar 

  • Manly BFJ (2006) Randomization, bootstrap, and Monte Carlo methods in biology, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Medina FM, Bonnaud E, Vidal E, Tershy BR, Zavaleta ES, Donlan CJ, Keitt BS, Le Corre M, Horwath SV, Nogales M (2011) A global review of the impacts of invasive cats on island endangered vertebrates. Glob Change Biol 17:3503–3510

    Google Scholar 

  • Moore MV (1988) Differential use of food resources by the instars of Chaoborus puncipennis. Freshw Biol 19:249–268

    Google Scholar 

  • Moore MV, Yan ND, Pawson T (1994) Omnivory of the larval phantom midge (Chaoborus spp.) and its potential significance for freshwater planktonic food webs. Can J Zool 72:2055–2065

    Google Scholar 

  • Muirhead J, Sprules WG (2003) Reaction distance of Bythotrephes longimanus, encounter rate and index of prey risk for Harp Lake, Ontario. Freshw Biol 48:135–146

    Google Scholar 

  • Nunes AL, Richter-Boix A, Laurila A, Rebelo R (2013) Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecololgia 171:115–127

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Minchin PPR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: community ecology package, R package version 2.0-3. http://CRAN.R-project.org/package=vegan

  • Pastorok RA (1980) The effects of predator hunger and food abundance on prey selection by Chaoborus larvae. Limnol Oceanogr 25:910–921

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing, version 2.14.2. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of non-native species. Ecol Monogr 83:263–282

    Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    PubMed  Google Scholar 

  • Salo P, Korpimäki E, Banks PB, Nordström M, Dickman CR (2007) Alien predators are more dangerous than native predators to prey populations. Proc R Soc B 274:1237–1243

    PubMed  PubMed Central  Google Scholar 

  • Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426

    PubMed  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators. Trends Ecol Evol 13:350–355

    PubMed  CAS  Google Scholar 

  • Sih AH, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR (2010) Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621

    Google Scholar 

  • Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

    Google Scholar 

  • Soluk DA, Collins NC (1988) Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos 52:94–100

    Google Scholar 

  • Strecker AL, Arnott SE (2005) Impact of Bythotrephes invasion on zooplankton communities in acid-damaged and recovered lakes on the Boreal Shield. Can J Fish Aquat Sci 62:2450–2462

    CAS  Google Scholar 

  • Strecker AL, Arnott SE (2008) Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11:490–503

    Google Scholar 

  • Strecker AL, Arnott SE, Yan ND, Girard R (2006) Variation in the response of crustacean zooplankton species richness and composition to the invasive predator Bythotrephes longimanus. Can J Fish Aquat Sci 63:2126–2136

    Google Scholar 

  • Swift MC, Fedorenko AY (1975) Some aspects of prey capture by Chaoborus larvae. Limnol Oceanogr 20:418–425

    Google Scholar 

  • Valenzuela AEJ, Rey AR, Fasola L, Schiavini A (2013) Understanding the inter-specific dynamics of two co-existing predators in the Tierra del Fuego Archipelago: the native southern river otter and the exotic American mink. Biol Invasions 15:645–656

    Google Scholar 

  • Vanderploeg HA, Liebig JR, Omair M (1993) Bythotrephes predation on Great Lakes’ zooplankton measured by an in situ method: implications for zooplankton community structure. Archiv Hydrobiol 127:1–8

    Google Scholar 

  • Wahlström E, Westman E (1999) Planktivory by the predacious cladoceran Bythotrephes longimanus: effects on zooplankton size structure and abundance. Can J Fish Aquat Sci 56:1856–1872

    Google Scholar 

  • Walsh JR, Carpenter SR, Vander Zanden MJ (2016) Invasive species triggers a massive loss of ecosystem services through a trophic cascade. PNAS 113:4081–4085

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wissel B, Yan ND, Ramcharan CW (2003a) Predation and refugia: implications for Chaoborus abundance and species composition. Freshw Biol 48:1421–1431

    Google Scholar 

  • Wissel B, Boeing WJ, Ramcharan CW (2003b) Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnol Oceanogr 48:1965–1976

    Google Scholar 

  • Yan ND, Leung B, Lewis MA, Peacor SD (2011) The spread, establishment and impacts of the spiny water flea, Bythotrephes longimanus, in temperate North America: a synopsis of the special issue. Biol Invasions 13:2423–2432

    Google Scholar 

  • Yang D, Gonzalez-Bernal E, Greenlees M, Shine R (2012) Interactions between native and invasive gecko lizards in tropical Australia. Austral Ecol 37:592–599

    Google Scholar 

  • Young JD, Yan ND (2008) Modification of the diel vertical migration of Bythotrephes longimanus by the cold-water planktivore Coregonus artedi. Freshw Biol 53:981–995

    Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Canadian Aquatic Invasive Species Network (CAISN), the Department of Fisheries and Oceans Canada, and by an NSERC-CGS scholarship to AJ. Support was also provided through the Queen’s University Summer Work Experience Program. We thank Gary Sprules and Howard Riessen for comments on earlier versions of this manuscript. We thank the staff of the Dorset Environmental Science Centre (DESC) for providing logistical support during our field experiments. We also thank H. Haig, J. Pokorny, S. Feagan, T. Patenaude, D. McGrath, H. and D. Jokela for field assistance, as well as S. MacPhee, H. Haig, C. Symons, N. Talbot, M. Keresztes, and A. Paul for assistance with enumeration of samples.

Authors’ contributions

AJ, SEA and BEB conceived and designed the experiments. AJ performed the experiments, analyzed the data and wrote the manuscript. SEA and BEB provided editorial advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneli Jokela.

Appendices

Appendix 1

Linear mixed model results and post hoc tests results examining whether cladoceran taxa abundance varied across the three thermal Strata and if distributions differed between Day and Night. Significant effects (P < 0.05) are highlighted in bold. Analyses were performed on log-transformed data for Daphnia (Control), Bosmina (Control), and Ceriodaphnia (Control, 100% Bythotrephes), on log (x + 1)-transformed data for Daphnia (50% Bythotrephes), Bosmina (50% Bythotrephes, 100% Bythotrephes), Ceriodaphnia (50% Bythotrephes), and Diaphanosoma (all predator treatments), and on square root-transformed data for Daphnia (100% Bythotrephes).

Daphnia

 

Control

50% Bythotrephes

100% Bythotrephes

df

Chi square

P

df

Chi square

P

df

Chi square

P

Stratum X Time

2

0.88

0.64

2

6.26

0.04

2

11.97

0.003

Stratum

2

7.72

0.02

Time

1

2.16

0.14

Post Hoc Tests

Control—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

0.0369

0.04

Metalimnion

0.0369

0.9995

Hypolimnion

0.04

0.9995

50% Bythotrephes—Stratum X Time

Stratum

Day

Night

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

Metalimnion

Hypolimnion

Day

Epilimnion

<0.001

<0.001

0.99

0.10

<0.001

Metalimnion

<0.001

1.00

0.01

1.00

0.75

Hypolimnion

<0.001

1.00

0.01

1.00

0.73

Night

Epilimnion

0.99

0.01

0.01

<0.001

<0.001

Metalimnion

0.10

1.00

1.00

<0.001

0.10

Hypolimnion

<0.001

0.75

0.73

<0.001

0.10

100% Bythotrephes—Stratum X Time

Stratum

Day

Night

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

Metalimnion

Hypolimnion

Day

Epilimnion

1.00

1.00

0.54

0.91

<0.001

Metalimnion

1.00

0.86

0.42

0.96

<0.001

Hypolimnion

0.77

0.86

0.03

1.00

0.03

Night

Epilimnion

0.54

0.42

0.03

0.07

<0.001

Metalimnion

0.91

0.96

1.00

0.07

0.01

Hypolimnion

<0.001

<0.001

0.03

<0.001

0.01

Bosmina

 

Control

50% Bythotrephes

100% Bythotrephes

df

Chi square

P

df

Chi square

P

df

Chi square

P

Stratum X Time

2

1.80

0.41

2

2.76

0.25

2

6.24

0.04

Stratum

2

39.30

<0.001

2

13.73

0.001

Time

1

5.51

0.02

1

1.58

0.21

Post Hoc Tests

Control—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

<0.001

<0.001

Metalimnion

<0.001

0.27

Hypolimnion

<0.001

0.27

50% Bythotrephes—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

<0.001

<0.001

Metalimnion

<0.001

0.96

Hypolimnion

<0.001

0.96

100% Bythotrephes—Stratum X Time

Stratum

Day

Night

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

Metalimnion

Hypolimnion

Day

Epilimnion

0.82

0.97

1.00

0.85

0.06

Metalimnion

0.82

1.00

0.82

1.00

0.44

Hypolimnion

0.97

1.00

0.95

1.00

0.24

Night

Epilimnion

1.00

0.82

0.95

0.43

0.001

Metalimnion

0.85

1.00

1.00

0.43

0.29

Hypolimnion

0.06

0.44

0.24

0.001

0.29

Ceriodaphnia

 

Control

50% Bythotrephes

100% Bythotrephes

df

Chi square

P

df

Chi square

P

df

Chi square

P

Stratum X Time

2

0.63

0.73

2

1.35

0.51

2

4.31

0.12

Stratum

2

41.22

<0.001

2

13.85

<0.001

2

1.94

0.38

Time

1

0.91

0.34

1

8.78

0.003

1

0.12

0.73

Post Hoc Tests

Control—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

0.495

<0.001

Metalimnion

0.495

<0.001

Hypolimnion

<0.001

<0.001

50% Bythotrephes—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

0.29

0.03

Metalimnion

0.29

<0.001

Hypolimnion

0.03

<0.001

100% Bythotrephes—NA

Diaphanosoma

 

Control

50% Bythotrephes

100% Bythotrephes

df

Chi square

P

df

Chi square

P

df

Chi square

P

Stratum X Time

2

5.43

0.07

2

1.53

0.47

2

0.53

0.77

Stratum

2

16.88

<0.001

2

11.98

0.003

2

2.15

0.34

Time

1

0.34

0.56

1

0.08

0.78

1

2.06

0.15

Post Hoc Tests

Control—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

<0.001

<0.001

Metalimnion

<0.001

0.77

Hypolimnion

<0.001

0.77

50% Bythotrephes—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

<0.001

0.07

Metalimnion

<0.001

0.18

Hypolimnion

0.07

0.18

100% Bythotrephes—NA

Appendix 2

Linear mixed model results and post hoc tests results examining whether copepods taxa abundance varied across the three thermal Strata and if distributions differed between day and night. Significant effects (P < 0.05) are highlighted in bold. All analyses were performed on log-transformed abundances, except for calanoid copepods in the 50% Bythotrephes treatment, in which no transformation was necessary.

Calanoid

 

Control

50% Bythotrephes

100% Bythotrephes

df

Chi square

P

df

Chi square

P

df

Chi square

P

Stratum X Time

2

3.58

0.17

2

7.01

0.03

2

3.83

0.15

Stratum

2

3.68

0.16

2

4.48

0.11

Time

1

6.70

0.01

1

2.28

0.13

Post Hoc Tests

Control—NA

50% Bythotrephes—Stratum X Time

Stratum

Day

Night

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

Metalimnion

Hypolimnion

Day

Epilimnion

0.15

1.00

0.92

1.00

0.96

Metalimnion

0.15

0.27

0.76

0.28

0.67

Hypolimnion

1.00

0.27

0.98

1.00

1.00

Night

Epilimnion

0.92

0.76

0.98

0.97

1.00

Metalimnion

1.00

0.28

1.00

0.97

0.99

Hypolimnion

0.96

0.67

1.00

1.00

0.99

100% Bythotrephes—NA

Cyclopoid

 

Control

50% Bythotrephes

100% Bythotrephes

df

Chi square

P

df

Chi square

P

df

Chi square

P

Stratum X Time

2

9.67

0.01

2

4.66

0.1

2

7.63

0.02

Stratum

2

18.12

<0.001

Time

1

4.64

0.03

Post Hoc Tests

Control—Stratum X Time

Stratum

Day

Night

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

Metalimnion

Hypolimnion

Day

Epilimnion

0.57

0.13

0.25

1.00

0.11

Metalimnion

0.57

<0.001

0.96

0.72

0.001

Hypolimnion

0.13

<0.001

<0.001

0.33

1.00

Night

Epilimnion

0.25

0.96

<0.001

0.08

<0.001

Metalimnion

1.00

0.72

0.33

0.08

0.03

Hypolimnion

0.11

0.001

1.00

<0.001

0.03

50% Bythotrephes—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

0.81

<0.001

Metalimnion

0.81

<0.001

Hypolimnion

<0.001

<0.001

100% Bythotrephes—Stratum X Time

Stratum

Day

Night

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

Metalimnion

Hypolimnion

Day

Epilimnion

0.32

<0.001

0.97

0.98

<0.001

Metalimnion

0.32

<0.001

0.79

0.07

<0.001

Hypolimnion

<0.001

<0.001

<0.001

0.01

1.00

Night

Epilimnion

0.97

0.79

<0.001

0.70

<0.001

Metalimnion

0.98

0.07

0.01

0.70

0.003

Hypolimnion

<0.001

<0.001

1.00

<0.001

0.003

Appendix 3

Linear mixed model results and post hoc tests results examining whether Chaoborus abundance varied across the three thermal Strata and if distributions differed between day and night. Significant effects (P < 0.05) are highlighted in bold. Analyses were performed on square root-transformed data for the control enclosures and on log-transformed data for the 50% Bythotrephes enclosures.

Chaoborus

 

Control

50% Bythotrephes

df

Chi square

P

df

Chi square

P

Stratum X Time

2

1.08

0.58

1

0.74

0.39

Stratum

2

17.41

<0.001

1

10.00

0.002

Time

1

0.68

0.41

1

0.07

0.79

Post Hoc Tests

Control—Stratum

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

0.91

<0.001

Metalimnion

0.91

<0.001

Hypolimnion

<0.001

<0.001

50% Bythotrephes—Stratum X Time

Stratum

Epilimnion

Metalimnion

Hypolimnion

Epilimnion

NA

NA

NA

Metalimnion

NA

<0.001

Hypolimnion

NA

<0.001

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokela, A., Arnott, S.E. & Beisner, B.E. Biotic resistance of impact: a native predator (Chaoborus) influences the impact of an invasive predator (Bythotrephes) in temperate lakes. Biol Invasions 19, 1495–1515 (2017). https://doi.org/10.1007/s10530-017-1374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1374-8

Keywords

Navigation