Skip to main content

Advertisement

Log in

Community structure, succession and invasibility in a seasonal deciduous forest in southern Brazil

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Majority of invasive trees colonize grasslands, shrublands, and temperate forests. Hovenia dulcis is an exception, because it is one of the most pervasive invaders in Brazilian subtropical forests where it has changed their structure and composition. This study has aimed to identify the clues for its success by defining the structural and functional characteristics of plant communities in different stages of succession with and without H. dulcis. Following the general assumptions of invasion ecology, we expected that H. dulcis establishment and invasion success would be significantly higher in early successional communities, with high resource availability and low species richness and diversity, as well as low functional diversity. Contrary to this hypothesis, no differences were found between plant communities invaded and non-invaded by H. dulcis at three different succession stages. No relationship was found between species richness and diversity and functional diversity, with respect to invasibility along the successional gradient. Hovenia dulcis is strongly associated with semi-open vegetation, where the species was found in higher density. The invasion of open vegetation is more recent, providing evidence of the species’s ability to invade plant communities in early successional stages. We concluded that the colonization by H. dulcis was associated with forest openness, but the species is also able to colonize semi-open vegetation, and persist in the successionally more advanced communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammondt SA, Litton CM (2011) Competition between native Hawaiian plants and the invasive grass Megathyrsus maximus: implications of functional diversity for ecological restoration. Restor Ecol 20(5):638–646

    Article  Google Scholar 

  • Ayres M, Ayres Junior M, Ayres DL, Santos AA (2007) Biostat 5.0—aplicações estatísticas nas áreas das ciências biomédicas. OnG Mamirauá, Belém

    Google Scholar 

  • Bardall ML, Roderjan CV, Galvão F, Curcio GR (2004) Caracterização florística e fitossociológica de um trecho sazonalmente inundável de floresta aluvial, em Araucária. PR Ci Fl 14(2):37–50

    Google Scholar 

  • Beard JS (1955) The classification of tropical American vegetation-types. Ecology 36(1):89–100

    Article  Google Scholar 

  • Bellingham PJ, Tanner EVJ, Healey JR (2005) Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests. J Veg Sci 16(6):675–684

    Google Scholar 

  • Belote RT, Jones RH, Hood SM, Wender BW (2008) Diversity-invasibility across an experimental disturbance gradient in Appalachian forests. Ecology 89:183–192

    Article  PubMed  Google Scholar 

  • Boeni BO (2011) Riqueza, estrutura e composição de espécies em floresta secundária invadida por Hovenia dulcis Thunb., caracterização do seu nicho de regeneração e efeitos alelopáticos. Thesis, Vale dos Sinos University, Brazil

  • Brasil (2008) Instrução Normativa 6, de 23 de setembro de 2008. Reconhece as espécies da flora brasileira ameaçadas de extinção. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, 24 Sept 2008

  • Brown CS, Rice KJ (2010) Effects of belowground resource use complementarity on invasion of constructed grassland plant communities. Biol Invasions 12:1319–1334

    Article  Google Scholar 

  • Buckey YM et al (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857

    Article  Google Scholar 

  • Budke JC, Athayde EA, Giehk ELH, Záchia RA, Eisinger SM (2005) Composição florística e estratégias de dispersão de espécies lenhosas em uma floresta ribeirinha, arroio Passo das Tropas, Santa Maria, RS, Brasil. Iheringia 60(1):17–24

    Google Scholar 

  • Burnham KM, Lee TD (2010) Canopy gaps facilitate establishment, growth, and reproduction of invasive Frangula alnus in a Tsuga canadensis dominated forest. Biol Invasions 12:1509–1520

    Article  Google Scholar 

  • Byun C, Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J Ecol 101:128–139

    Article  Google Scholar 

  • Cáceres NC, Monteiro-Filho ELA (2001) Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of southern Brazil. Stud Neotrop Fauna Environ 36:85–92

    Article  Google Scholar 

  • Carvalho PER (1994a) Ecologia, silvicultura e usos da uva-do-japão (Hovenia dulcis Thunberg). Circular Técnica EMBRAPA Florestas, Colombo

    Google Scholar 

  • Carvalho PER (1994b) Espécies florestais brasileiras—recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA Florestas, Colombo

    Google Scholar 

  • Casanoves F, Pla L, Di Rienzo JA, Díaz S (2010) FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol 2(3):233–237

    Article  Google Scholar 

  • Catford JA, Daehler CC, Murphy HT, Sheppard AW, Hardesty BD, Westcott DA, Rejmánek M, Bellingham PJ, Pergl J, Horvitz CC, Hulme PE (2012) The intermediate disturbance hypothesis and plant invasions: implications for species richness and management. Perspect Plant Ecol Evol Syst 14:231–241

    Article  Google Scholar 

  • Colwell RK (2006) Estimates: statistical estimation of species richness and shared species from samples. Version 8. Persistent purl.ock.org/estimates

  • Costa JT, Estevan DA, Bianchini E, Fonseca ICB (2011) Composição florística das espécies vasculares e caráter sucessional da flora arbórea de um fragmento de Floresta Estacional Semidecidual no Sul do Brasil. Rev Bras Bot 34(3):411–422

    Article  Google Scholar 

  • Coutts SR, van Klinken RD, Yokomizo H, Buckley YM (2011) What are the key drives of spread in invasive plants: dispersal, demography or landscape: and can we use this knowledge to aid management? Biol Invasions 13:1649–1661

    Article  Google Scholar 

  • Cunard C, Lee TD (2009) Is patience a virtue? Succession, light, and the death of invasive glossy buckthorn (Frangula alnus). Biol Invasions 11:577–586

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534

    Article  Google Scholar 

  • Dechoum MS, Ziller SR (2013) Métodos para controle de plantas exóticas invasoras. Biotemas 26(1):69–77

    Article  Google Scholar 

  • DeGasperis BG, Motzkin G (2007) Windows of opportunity: historical and ecological controls on Berberis thunbergii invasions. Ecology 88(12):3115–3125

    Article  PubMed  Google Scholar 

  • Denslow JS, Dewalt SJ (2008) Exotic plant invasion in tropical forests: patterns and hypothesis. In: Carson W, Schnitzer S (eds) Tropical forest community ecology. Wiley, New York, pp 409–426

    Google Scholar 

  • dos Santos K, Kinoshita LS, dos Santos FAM (2007) Tree species composition and similarity in semi deciduous forest fragments of southeastern Brazil. Biol Cons 135:268–277

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Eschtruth AK, Battles JJ (2011) The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility. Ecology 92:1314–1322

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fine PVA (2002) The invasibility of tropical forests by exotic plants. J Trop Ecol 18:687–705

    Article  Google Scholar 

  • Flinn KM, Marks PL (2007) Agricultural legacies in forest environments: tree communities, soil properties and light availability. Ecol Appl 17:452–463

    Article  PubMed  Google Scholar 

  • Flory SL, Clay K (2009) Effects of roads and forest successional age on experimental plant invasions. Biol Conserv 142(11):2531–2537

    Article  Google Scholar 

  • Franco AMS (2008) Estrutura, diversidade e aspectos ecológicos do componente arbustivo e arbóreo em uma floresta estacional, Parque Estadual do Turvo, Sul do Brasil. Dissertation, Federal University of Rio Grande do Sul, Brazil

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23(12):695–703

    Article  PubMed  Google Scholar 

  • Giehl EL, Athayde EA, Budke JC, Gesing JPA, Einsiger SM, Canto-Dorow TS (2007) Espectro e distribuição vertical das estratégias de dispersão de diásporos do componente arbóreo em uma floresta estacional no sul do Brasil. Acta Bot Bras 21(1):137–145

    Article  Google Scholar 

  • Gilbert B, Lechowicz MJ (2005) Invasibility and abiotic gradients: the positive correlation between native and exotic plant diversity. Ecology 86:1848–1855

    Article  Google Scholar 

  • Godoy O, Saldaña A, Fuentes N, Valladares F, Gianoli E (2011) Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biol Invasions 13:1615–1625

    Article  Google Scholar 

  • Goldstein LJ, Suding KN (2013) Aplying competition theory to invasion: resource impacts indicate invasion mechanisms in California shrublands. Biol Invasions 16:191–203

    Article  Google Scholar 

  • Green PT, Lake PS, O’Dowd DJ (2004) Resistance of island rainforest to invasion by alien plants: influence of microhabitat and herbivory on seedling performance. Biol Invasions 6:1–9

    Article  Google Scholar 

  • Hartshorn GS (1978) Treefalls and tropical forest dynamics. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University Press, New York, pp 617–638

    Google Scholar 

  • Hendges CD, Fortes VB, Dechoum MS (2012) Consumption of the invasive alien species Hovenia dulcis thumb. (Rhamnaceae) by Sapajus nigritus Kerr, 1792 in a protected area in southern Brazil. Rev Bras Zoociências 14(1, 2, 3):255–260

    Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848

    Article  Google Scholar 

  • Hobbs RJ (2011) Land use. In: Simberloff D, Rejmánek R (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 425–427

    Google Scholar 

  • Huston MA (2004) Management strategies for plant invasions: manipulating productivity, disturbance, and competition. Divers Distrib 10:167–178

    Article  Google Scholar 

  • Hyun TK, Eom SH, Yu CY, Roitsch T (2009) Hovenia dulcis—an Asian traditional herb. Planta Med 76:943–949

    Article  Google Scholar 

  • IBGE (2012) Technical Manual of Brazilian vegetation, 2nd edn. IBGE, Rio de Janeiro

    Google Scholar 

  • IBM Corp (2010) IBM SPSS statistics for Windows, version 19.0. IBM Corp, Armonk

    Google Scholar 

  • Ivanauskas NM, Rodrigues RR (2000) Florística e fitossociologia de remanescentes de floresta estacional Deciduous em Piracicaba, São Paulo, Brasil. Rev Bras Bot 23(3):291–304

    Article  Google Scholar 

  • Johnson VS, Litvaitis JA, Lee TD, Frey S (2006) The role of spatial and temporal scale in colonization and spread of invasive shrubs in early successional habitats. For Ecol Manag 228(1–3):124–134

    Article  Google Scholar 

  • Katz DSW, Lovett GM, Canham CD, O’Reilly CM (2010) Legacies of land use history diminish over 22 years in a forest in southeastern New York. J Torrey Bot Soc 137(2):236–251

    Article  Google Scholar 

  • Kilka RV, Longhi SJ (2011) A regeneração natural e a sucessão condicionada por diferentes tipos de distúrbios: um estudo de caso. In: Schumacher MV, Longhi SJ, Brun E, Kilca RV (eds) A Floresta estacional subtropical—caracterização e ecologia no rebordo do planalto meridional. Santa Maria, pp 121–140

  • Klein RM (1972) Árvores nativas da floresta subtropical do Alto Uruguai. Sellowia 24:9–62

    Google Scholar 

  • Klein RM (1978) Mapa fitogeográfico do estado de Santa Catarina. In: Klein RM (ed) Flora Ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí

    Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Laurance WF, Peres CA (2006) Emerging threats to tropical forests. University of Chicago Press, Chicago

    Google Scholar 

  • Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy LE (2000) Rainforest fragmentation kills big trees. Nature 404:836

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL, Capretz RL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469–482

    Article  PubMed  Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Levine JD (2000) Species diversity and biological invasions: relating process to community pattern. Science 288:852–854

    Article  CAS  PubMed  Google Scholar 

  • Levine JD, Alder PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Lonsdale WM (1999) Global pattern of plant invasions and the concept of invasibility. Ecology 80(5):1522–1536

    Article  Google Scholar 

  • Loregian AC, Silva BB, Zanin EM, Decian WS, Henke-Oliveira C, Budke JC (2012) Padrões espaciais e ecológicos de espécies arbóreas refletem a estrutura em mosaicos de uma floresta subtropical. Acta Bot Bras 26(3):593–606

    Article  Google Scholar 

  • Major KC, Nosko P, Kuehne C, Campbell D, Bauhus J (2013) Regeneration dynamics of non-native northern red oak (Quercus rubra L.) populations as influenced by environmental factors: a case study in managed hardwood forests of southwestern Germany. For Ecol Manag 291:144–153

    Article  Google Scholar 

  • Martin PH, Marks PL (2006) Intact forests provide weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). J Ecol 94:1070–1079

    Article  Google Scholar 

  • Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7(3):142–149

    Article  Google Scholar 

  • Martínez OJA (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64

    Article  Google Scholar 

  • Michalski F, Nishi I, Peres CA (2007) Disturbance-mediated drift in tree functional groups in Amazonian forest fragments. Biotropica 36:691–701

    Article  Google Scholar 

  • Mikich SB, Silva SM (2001) Composição florística e fenologia das espécies zoocóricas de remanescentes de Floresta Estacional SemiDeciduous no centro-oeste do Paraná. Acta Bot Bras 15(1):89–113

    Article  Google Scholar 

  • Moody ME, Mack RN (1988) Controlling the spread of plant invasions: the importance of nascent foci. J Appl Ecol 25:1009–1021

    Article  Google Scholar 

  • Pla L, Casanoves F, Di Rienzo J (2012) Quantifying functional biodiversity. Springer, New York

    Book  Google Scholar 

  • Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13(3):448–459

    Article  Google Scholar 

  • Pysek P, Richardson D (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Ecological studies, vol 193. Springer, Berlin, pp 97–123

    Chapter  Google Scholar 

  • Pywell RF, Bullock JM, Roy DB, Warman L, Walker KJ, Rothery P (2003) Plant traits as predictors of performance in ecological restoration. J Appl Ecol 40:65–77

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Radtke A, Ambraß S, Zerbe S, Tonon G, Fontana V, Ammer C (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For Ecol Manag 291:308–317

    Article  Google Scholar 

  • Reitz R (1974) Palmeiras. Flora Ilustrada Catarinense, Herbário Barbosa Rodrigues

    Google Scholar 

  • Reitz R, Klein RM, Reis A (1978) Projeto Madeira de Santa Catarina. Revista Sellowia 28–30

  • Reitz R, Klein RM, Reis A (1988) Projeto madeira do Rio Grande do Sul. Governo do Estado do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 369–388

    Google Scholar 

  • Rejmánek M (1996) Species richness and resistance to invasion. In: Orians G, Dirzo R, Cushman JH (eds) Biodiversity and ecosystem processes in tropical forests. Ecological studies 122. Springer, New York, pp 153–172

    Chapter  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77(6):1655–1661

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive species—2013 update on the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Ruschel AR, Nodari RO, Moerschbacher BM (2007) Woody plant species richness in the Turvo State park, a large remnant of deciduous Atlantic forest, Brazil. Biodivers Conserv 16:1699–1714

    Article  Google Scholar 

  • Santos BA, Peres CA, Oliveira MA, Grillo A, Alves-Costa C, Tabarelli M (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260

    Article  Google Scholar 

  • SAS Institute (1998) StatView for Windows: version 5.0.1

  • Schaff LB, Filho AF, Galvão F, Sanquetta CR, Longhi SJ (2006) Modificações florístico-estruturais de um remanescente de Floresta Ombófila Mista Montana no período de 1979 e 2000. Ci Fl 16(3):271–291

    Google Scholar 

  • Schupp EW (2011) Dispersal ability, plants. In: Simberloff D, Rejmánek R (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 159–165

    Google Scholar 

  • Selle GL (2009) Guias de densidade e índices de sítios para Hovenia dulcis Thunberg na região central do estado do Rio Grande do Sul, Brasil. Dissertation, Federal University of Santa Maria, Brazil

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17(4):170–176

    Article  Google Scholar 

  • Siderhurst LA, Griscom HP, Kyger C, Stutzman J, Trumbo B (2012) Tree species composition and diversity and the abundance of exotics in forest fragments of the Shenandoah Valley, Virginia. Castanea 77(4):348–363

    Article  Google Scholar 

  • Silva JG (2012) Efeito da arbórea introduzida Hovenia dulcis Thunb. (Rhamnaceae) sobre o componente arbóreo-arbustivo regenerante da Floresta Atlântica no sul do Brasil. Thesis, Federal University of Rio Grande do Sul, Brazil

  • Siminski A, Fantini AC, Guries RP, Ruschel AR, Reis MS (2011) Secondary forest succession in the Mata Atlantica, Brazil: floristic and phytosociological trends. ISRN Ecol. 2011, (Article ID 759893), p 19. doi:10.5402/2011/759893

  • Sobral M, Jarenkow JA, Brack P, Irgang B, Larocca J, Rodrigues RS (2006) Flora arbórea e arborescente do Rio Grande do Sul. Editora Rima, São Carlos

    Google Scholar 

  • StatSoft Inc. (2004) STATISTICA (data analysis software system) version 7. www.statsoft.com

  • Symstad AJ (2000) A test of the effects of functional group richness and composition on grassland invasibility. Ecology 81(1):99–109

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Nature 277:1300–1302

    CAS  Google Scholar 

  • Van der Pijl L (1982) Principals of dispersal of higher plants. Springer, Berlin

    Book  Google Scholar 

  • Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (2012) inventário florístico florestal de Santa Catarina—floresta estacional deciduous, vol 2. Edifurb, Blumenau

    Google Scholar 

  • Von Holle B, Motzkin G (2007) Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biol Conserv 136(1):33–43

    Article  Google Scholar 

  • Von Holle B, Simberloff D (2005) Ecological resistance overwhelmed by propagule pressure. Ecology 86(12):3212–3218

    Article  Google Scholar 

  • Von Holle B, Delcourt HZ, Simberloff D (2003) The importance of biological inertia in plant community resistance to invasion. J Veg Sci 14:425–432

    Article  Google Scholar 

  • Webb SL, Dwyer M, Kaunzinger CK, Wyckoff PH (2000) The myth of the resilient forest: case study of the invasive Norway Maple (Acer platanoides). Rhodora 102:332–354

    Google Scholar 

  • Webster CR, Jenkins MA, Jose S (2006) Woody invaders and the challenges they pose to forest ecosystems in the eastern United States. J For 104(7):366–374

    Google Scholar 

  • Wheeler RE (2010) Permutation tests for linear models in R. http://cran.r-project.org/web/packages/lmPerm/vignettes/lmPerm.pdf. (Accessed 14 Nov 2013)

  • Whitfield TJS, Lodge AG, Roth AM, Reich PB (2014) Community phylogenetic and abiotic site characteristics influence abundance of the invasive plant Rhamnus cathartica L. J Plant Ecol 7(2):202–209

    Article  Google Scholar 

  • Whitmore TC (1989) Canopy gaps and the two major groups of tropical trees. Ecology 70:536–538

    Article  Google Scholar 

  • Yamamoto LF, Kinoshita LS, Martins FR (2007) Síndromes de polinização e de dispersão em fragmentos da Floresta Estacional Semidecídua Montana, SP, Brasil. Acta Bot Bras 21(1):137–145

    Article  Google Scholar 

  • Yun CW, Lee BC (2002) Vegetation structure of Hovenia dulcis community in South Korea. Korean J Ecol 25(2):93–99

    Article  Google Scholar 

  • Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Rev Bras Bot 34(3):431–446

    Article  Google Scholar 

Download references

Acknowledgments

The expert help of Cassio Daltrini Neto, Tiago Barbosa and Daniel Falkenberg. Sílvia Ziller, Clare Aslan, Elaine Chow and Hugh Safford provided important suggestions and helped improve the language. Two anonymous referees whose comments and suggestions substantially improved the manuscript. Financial support came from Tractebel Energia S.A., from the Graduate Program in Ecology of the Federal University of Santa Catarina and from the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina, Brazil. MS Dechoum is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil. N Peroni is supported by Conselho Nacional de Desenvolvimento Científico e Tecnólogico, Brazil. SM Zalba receives support of Universidad Nacional del Sur and CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dechoum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dechoum, M.S., Castellani, T.T., Zalba, S.M. et al. Community structure, succession and invasibility in a seasonal deciduous forest in southern Brazil. Biol Invasions 17, 1697–1712 (2015). https://doi.org/10.1007/s10530-014-0827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0827-6

Keywords

Navigation