Skip to main content

Advertisement

Log in

Cytosolic malate dehydrogenase regulates senescence in human fibroblasts

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Carbohydrate metabolism changes during cellular senescence. Cytosolic malate dehydrogenase (MDH1) catalyzes the reversible reduction of oxaloacetate to malate at the expense of reduced nicotinamide adenine dinucleotide (NADH). Here, we show that MDH1 plays a critical role in the cellular senescence of human fibroblasts. We observed that the activity of MDH1 was reduced in old human dermal fibroblasts (HDFs) [population doublings (PD) 56], suggesting a link between decreased MDH1 protein levels and aging. Knockdown of MDH1 in young HDFs (PD 20) and the IMR90 human fibroblast cell line resulted in the appearance of significant cellular senescence features, including senescence-associated β-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16INK4A and p21CIP1 protein levels. Cytosolic NAD/NADH ratios were decreased in old HDFs to the same extent as in MDH1 knockdown HDFs, suggesting that cytosolic NAD depletion is related to cellular senescence. We found that AMP-activated protein kinase, a sensor of cellular energy, was activated in MDH1 knockdown cells. We also found that sirtuin 1 (SIRT1) deacetylase, a controller of cellular senescence, was decreased in MDH1 knockdown cells. These results indicate that the decrease in MDH1 and subsequent reduction in NAD/NADH ratio, which causes SIRT1 inhibition, is a likely carbohydrate metabolism-controlled cellular senescence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MDH1:

Cytosolic malate dehydrogenase

MDH2:

Mitochondrial malate dehydrogenase

NAD:

Nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

AMPK:

AMP-activated protein kinase

SIRT1:

Sirtuin (silent mating type information regulation 2 homolog) 1

HIC1:

Hypermethylated in cancer 1

HDFs:

Human dermal fibroblasts

PD:

Population doublings

ROS:

Reactive oxygen species

References

  • Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9:252–272

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Nakamura M, Magori E, Fukuda H, Sako T (2003) Decrease in malate dehydrogenase activities in peripheral leucocytes of type 1 diabetic dogs. Res Vet Sci 74:183–185

    Article  PubMed  CAS  Google Scholar 

  • Bayreuther K, Rodemann HP, Francz PI, Maier K (1988) Differentiation of fibroblast stem cells. J Cell Sci Suppl 10:115–130

    PubMed  CAS  Google Scholar 

  • Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 6:e19194

    Article  PubMed  CAS  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437–448

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  PubMed  CAS  Google Scholar 

  • Dho SH, Kwon KS (2003) The Ret finger protein induces apoptosis via its RING finger-B box-coiled-coil motif. J Biol Chem 278:31902–31908

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Yao JL, Atkinson RG, Putterill JJ, Morris BA, Gardner RC (2000) MDH1: an apple homeobox gene belonging to the BEL1 family. Plant Mol Biol 42:623–633

    Article  PubMed  CAS  Google Scholar 

  • Easlon E, Tsang F, Skinner C, Wang C, Lin SJ (2008) The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev 22:931–944

    Article  PubMed  CAS  Google Scholar 

  • Fan YY, Kohno M, Hitomi H, Kitada K, Fujisawa Y, Yatabe J, Yatabe M, Felder RA, Ohsaki H, Rafig K, Sherajee SJ, Noma T, Nishiyama A, Nakano D (2011) Aldosterone/mineralocorticoid receptor stimulation induces cellular senescence in the kidney. Endocrinology 152:680–688

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Xie B, Mao Z (2012) Autophagy in premature senescent cells is activated via AMPK pathway. Int J Mol Sci 13:3563–3582

    Article  PubMed  CAS  Google Scholar 

  • Haendeler J, Hoffmann J, Brandes RP, Zeiher AM, Dimmeler S (2003) Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol Cell Biol 23:4598–4610

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2008) Energy metabolism, altered proteins, sirtuins and ageing: Converging mechanisms? Biogerontology 9:49–55

    Article  PubMed  CAS  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  PubMed  CAS  Google Scholar 

  • Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA (2005) Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:846–858

    Article  PubMed  CAS  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137

    PubMed  CAS  Google Scholar 

  • Joh T, Takeshima H, Tsuzuki T, Setoyama C, Shimada K, Tanase S, Kuramitsu S, Kagamiyama H, Morino Y (1987) Cloning and sequence analysis of cDNAs encoding mammalian cytosolic malate dehydrogenase. Comparison of the amino acid sequences of mammalian and bacterial malate dehydrogenase. J Biol Chem 262:15127–15131

    PubMed  CAS  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  PubMed  CAS  Google Scholar 

  • Knecht M, Regitz-Zagrosek V, Pleissner KP, Jungblut P, Steffen C, Hildebrandt A, Fleck E (1994) Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electrophoresis. Eur Heart J 15 Suppl D: 37–44

    PubMed  CAS  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Kim JH, Cho EJ, Youn HD (2009) A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 16:738–748

    Article  PubMed  CAS  Google Scholar 

  • Lehrmann E, Hyde TM, Vawter MP, Becker KG, Kleinman JE, Freed WJ (2003) The use of microarrays to characterize neuropsychiatric disorders: postmortem studies of substance abuse and schizophrenia. Curr Mol Med 3:437–446

    Article  PubMed  CAS  Google Scholar 

  • Magori E, Nakamura M, Inoue A, Tanaka A, Sasaki N, Fukuda H, Mizutani H, Sako T, Kimura N, Arai T (2005) Malate dehydrogenase activities are lower in some types of peripheral leucocytes of dogs and cats with type 1 diabetes mellitus. Res Vet Sci 78:39–44

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    Article  PubMed  CAS  Google Scholar 

  • Mali Y, Zisapels N (2008) Gain of interaction of ALS-linked G93A superoxide dismutase with cytosolic malate dehydrogenase. Neurobiol Dis 32:133–141

    Article  PubMed  CAS  Google Scholar 

  • McElwee JJ, Schuster E, Blanc E, Thornton J, Gems D (2006) Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mech Ageing Dev 127:458–472

    Article  PubMed  CAS  Google Scholar 

  • Mohazzab HK, Kaminski PM, Wolin MS (1997) Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase. Circulation 96:614–620

    Article  Google Scholar 

  • Rai P, Onder TT, Young JJ, McFaline JL, Pang B, Dedon PC, Weinberg RA (2009) Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proc Natl Acad Sci USA 106:169–174

    Article  PubMed  Google Scholar 

  • Sejersen H, Rattan SIS (2009) Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology 10:203–211

    Article  PubMed  CAS  Google Scholar 

  • Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 94:9648–9653

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Inazawa J, Nakamura Y (1996) Molecular cloning and mapping of a human cDNA for cytosolic malate dehydrogenase (MDH1). Genomics 32:128–130

    Article  PubMed  CAS  Google Scholar 

  • Van Rechem C, Boulay G, Leprince D (2009) HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A. Biochem Biophys Res Commun 385:586–590

    Article  PubMed  Google Scholar 

  • Vawter MP, Shannon Weickert C, Ferran E, Matsumoto M, Overman K, Hyde TM, Weinberger DR, Bunney WE, Kleinman JE (2004) Gene expression of metabolic enzymes and a protease inhibitor in the prefrontal cortex are decreased in schizophrenia. Neurochem Res 29:1245–1255

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Yang X, Lopez de Silanes I, Carling D, Gorospe M (2003) Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem 278:27016–27023

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Hu CP, Xu KP, Tan GS, Li YJ (2010) Effects of selaginellin on homocysteine-induced senescence in human umbilical vein endothelial cells. J Cardiovasc Pharmacol 55:560–566

    Article  PubMed  CAS  Google Scholar 

  • Wright WE, Shay JW (1995) Time, telomeres and tumours: Is cellular senescence more than an anticancer mechanism? Trends Cell Biol 5:293–297

    Article  PubMed  CAS  Google Scholar 

  • Yarian CS, Toroser D, Sohal RS (2006) Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev 127:79–84

    Article  PubMed  CAS  Google Scholar 

  • Young JJ, Patel A, Rai P (2010) Suppression of thioredoxin-1 induces premature senescence in normal human fibroblasts. Biochem Biophys Res Commun 392:363–368

    Article  PubMed  CAS  Google Scholar 

  • Yu BP (2006) Why calorie restriction would work for human longevity. Biogerontology 7:179–182

    Article  PubMed  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  PubMed  CAS  Google Scholar 

  • Zee RY, Castonguay AJ, Barton NS, Germer S, Martin M (2010) Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case–control study. Transl Res 155:166–169

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Wang S-Y, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH (2007) Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA 104:829–833

    Article  PubMed  CAS  Google Scholar 

  • Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, Vanhoutte PM, Wang Y (2010) SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 106:1384–1393

    Article  PubMed  CAS  Google Scholar 

  • Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P (2003) Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 376:403–411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Research Foundation of Korea (20110030133, 20110018053, and 20110027762, K.-S. K.) and a grant from the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (12201901-14924, K.-S. K.). The authors thank Hong-Duk Youn for reagents and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Sun Kwon.

Additional information

Seung-Min Lee and So Hee Dho contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SM., Dho, S.H., Ju, SK. et al. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 13, 525–536 (2012). https://doi.org/10.1007/s10522-012-9397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-012-9397-0

Keywords

Navigation