Skip to main content
Log in

Activation and assembly of the inflammasomes through conserved protein domain families

  • The Domains of Apoptosis and Inflammation
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Inflammasomes are oligomeric protein complexes assembled through interactions among the death domain superfamily members, in particular the CARD and PYD domains. Recent progress has shed lights on how the ASC PYD can polymerize to form filaments using multiple domain:domain interfaces, and how the caspase4 CARD can recognize LPS to activate the non-classical inflammasome pathway. Comprehensive understanding of the molecular mechanisms of inflammasome activation and assembly require more extensive structural and biophysical dissection of the inflammasome components and complexes, in particular additional CARD or PYD filaments. Because of the variations in death domain structures and complexes observed so far, future work will undoubtedly shed lights on the mechanisms of inflammasome assembly as well as more surprises on the versatile structure and function of the death domain superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  2. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    Article  CAS  PubMed  Google Scholar 

  3. Keller M, Rüegg A, Werner S, Beer H-D (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831

    Article  CAS  PubMed  Google Scholar 

  4. Shi J, Zhao Y, Wang Y et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192

    Article  CAS  PubMed  Google Scholar 

  5. Hagar JA, Powell DA, Aachoui Y et al (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kayagaki N, Wong MT, Stowe IB et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

  7. Asgari E, Le Friec G, Yamamoto H et al (2013) C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122:3473–3481

    Article  CAS  PubMed  Google Scholar 

  8. Bacle F, Haeffner-Cavaillon N, Laude M et al (1990) Induction of IL-1 release through stimulation of the C3b/C4b complement receptor type one (CR1, CD35) on human monocytes. J Immunol 144:147–152

    CAS  PubMed  Google Scholar 

  9. Ito M, Yanagi Y, Ichinohe T (2012) Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog 8:e1002857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gaffney EV, Stoner CR, Lingenfelter SE, Koch GA (1990) Secretion of interleukin-1 beta by a leukemia cell line in response to lipopolysaccharide and mezerein. J Biol Response Mod 9:205–211

    CAS  PubMed  Google Scholar 

  11. Lee G-S, Subramanian N, Kim AI et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca(2+) and cAMP. Nature 492:123–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Reiner NE (1987) Parasite accessory cell interactions in murine leishmaniasis. I. Evasion and stimulus-dependent suppression of the macrophage interleukin 1 response by Leishmania donovani. J Immunol 138:1919–1925

    CAS  PubMed  Google Scholar 

  13. LaRock CN, Cookson BT (2012) The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12:799–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rigante D, Lopalco G, Vitale A et al (2014) Untangling the web of systemic autoinflammatory diseases. Mediat Inflamm 2014:948154

    Article  Google Scholar 

  15. Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tsuchiya K, Hara H (2014) The inflammasome and its regulation. Crit Rev Immunol 34:41–80

    Article  CAS  PubMed  Google Scholar 

  17. Gringhuis SI, Kaptein TM, Wevers BA et al (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254

    Article  CAS  PubMed  Google Scholar 

  18. de Alba E (2009) Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem 284:32932–32941

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jin T, Curry J, Smith P et al (2013) Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1. Proteins 81:1266–1270

    Article  CAS  PubMed  Google Scholar 

  20. Bertin J, DiStefano PS (2000) The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ 7:1273–1274

    Article  CAS  PubMed  Google Scholar 

  21. Martinon F, Hofmann K, Tschopp J (2001) The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 11:R118–R120

    Article  CAS  PubMed  Google Scholar 

  22. Park HH, Lo Y-C, Lin S-C et al (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Eibl C, Grigoriu S, Hessenberger M et al (2012) Structural and functional analysis of the NLRP4 pyrin domain. Biochemistry 51:7330–7341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pinheiro AS, Proell M, Eibl C et al (2010) Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity. J Biol Chem 285:27402–27410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Eibl C, Hessenberger M, Wenger J, Brandstetter H (2014) Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions. Acta Crystallogr D Biol Crystallogr 70:2007–2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Natarajan A, Ghose R, Hill JM (2006) Structure and dynamics of ASC2, a pyrin domain-only protein that regulates inflammatory signaling. J Biol Chem 281:31863–31875

    Article  CAS  PubMed  Google Scholar 

  28. Jin T, Perry A, Smith P et al (2013) Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J Biol Chem 288:13225–13235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lu A, Kabaleeswaran V, Fu T et al (2014) Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. J Mol Biol 426:1420–1427

    Article  CAS  PubMed  Google Scholar 

  30. Bae JY, Park HH (2011) Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 286:39528–39536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Su M-Y, Kuo C-I, Chang C-F, Chang C-I (2013) Three-dimensional structure of human NLRP10/PYNOD pyrin domain reveals a homotypic interaction site distinct from its mouse homologue. PLoS ONE 8:e67843. doi:10.1371/journal.pone.0067843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pinheiro AS, Eibl C, Ekman-Vural Z et al (2011) The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol 413:790–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Vajjhala PR, Kaiser S, Smith SJ et al (2014) Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly. J Biol Chem 289:23504–23519

    Article  CAS  PubMed  Google Scholar 

  34. Lu A, Magupalli VG, Ruan J et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206

    Article  CAS  PubMed  Google Scholar 

  35. Peisley A, Wu B, Yao H et al (2013) RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell 51:1–11

    Article  Google Scholar 

  36. Cai X, Chen J, Xu H et al (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222

    Article  CAS  PubMed  Google Scholar 

  37. Stehlik C, Krajewska M, Welsh K et al (2003) The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J 373:101–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Srimathi T, Robbins SL, Dubas RL et al (2008) Mapping of POP1-binding site on pyrin domain of ASC. J Biol Chem 283:15390–15398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Atianand MK, Harton JA (2011) Uncoupling of Pyrin-only Protein 2 (POP2)-mediated Dual Regulation of NF-κB and the Inflammasome. J Biol Chem 286:40536–40547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Khare S, Ratsimandresy RA, de Almeida L et al (2014) The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 15:343–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Johnston JB, Barrett JW, Nazarian SH et al (2005) A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23:587–598

    Article  CAS  PubMed  Google Scholar 

  42. Coussens NP, Mowers JC, McDonald C et al (2007) Crystal structure of the Nod1 caspase activation and recruitment domain. Biochem Biophys Res Commun 353:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Srimathi T, Robbins SL, Dubas RL et al (2008) Monomer/dimer transition of the caspase-recruitment domain of human Nod1. Biochemistry 47:1319–1325

    Article  CAS  PubMed  Google Scholar 

  44. Scott FL, Stec B, Pop C et al (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:1019–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Dalal K, Pio F (2006) Thermodynamics and stability of the PAAD/DAPIN/PYRIN domain of IFI-16. FEBS Lett 580:3083–3090

    Article  CAS  PubMed  Google Scholar 

  46. Kowalinski E, Lunardi T, McCarthy AA et al (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–435  

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tengchuan Jin or Tsan Sam Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Xiao, T.S. Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis 20, 151–156 (2015). https://doi.org/10.1007/s10495-014-1053-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1053-5

Keywords

Navigation