Skip to main content
Log in

Multiscale tensegrity model for the tensile properties of DNA nanotubes

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

DNA nanotubes (DNTs) with user-defined shapes and functionalities have potential applications in many fields. So far, compared with numerous experimental studies, there have been only a handful of models on the mechanical properties of such DNTs. This paper aims at presenting a multiscale model to quantify the correlations among the pre-tension states, tensile properties, encapsulation structures of DNTs, and the surrounding factors. First, by combining a statistical worm-like-chain (WLC) model of single DNA deformation and Parsegian’s mesoscopic model of DNA liquid crystal free energy, a multiscale tensegrity model is established, and the pre-tension state of DNTs is characterized theoretically for the first time. Then, by using the minimum potential energy principle, the force-extension curve and tensile rigidity of pre-tension DNTs are predicted. Finally, the effects of the encapsulation structure and surrounding factors on the tensile properties of DNTs are studied. The predictions for the tensile behaviors of DNTs can not only reproduce the existing experimental results, but also reveal that the competition of DNA intrachain and interchain interactions in the encapsulation structures determines the pre-tension states of DNTs and their tensile properties. The changes in the pre-tension states and environmental factors make the monotonic or non-monotonic changes in the tensile properties of DNTs under longitudinal loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOUGLAS, S. M., DIETZ, H., LIEDL, T., HOGBERG, B., GRAF, F., and SHIH, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. nature, 459(7245), 414–418 (2009)

    Article  Google Scholar 

  2. MARRAS, A. E., ZHOU, L. F., SU, H. J., and CASTRO, C. E. Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 112(3), 713–718 (2015)

    Article  Google Scholar 

  3. JIANG, S. X., GE, Z. L., MOU, S., YAN, H., and FAN, C. H. Designer DNA nanostructures for therapeutics. Chem, 7(5), 1156–1179 (2020)

    Article  Google Scholar 

  4. KAUERT, D. J., KURTH, T., LIEDL, T., and SEIDEL, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Letters, 11(12), 5558–5563 (2011)

    Article  Google Scholar 

  5. MA, Z. P., KIM, Y. J., PARK, S., HIRAI, Y., TSUCHIYA, T., KIM, D. N., and TABATA, O. Direct measurement of transversely isotropic DNA nanotube by force-distance curve-based atomic force microscopy. Micro and Nano Letters, 10(10), 513–517 (2015)

    Article  Google Scholar 

  6. NASKAR, S. and MAITI, P. K. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA. Journal of Materials Chemistry B, 9, 5102–5113 (2021)

    Article  Google Scholar 

  7. LIEDL, T., HOGBERG, B., TYTELL, J., INGBER, D. E., and SHIH, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature Nanotechnology, 5(7), 520–524 (2010)

    Article  Google Scholar 

  8. PFITZNER, E., WACHAUF, C., KILCHHERR, F., PELZ, B., SHIH, W. M., RIEF, M., and DIETZ, H. Rigid DNA beams for high-resolution single-molecule mechanics. Angewandte Chemie (International Edition in English), 52(30), 7766–7771 (2013)

    Article  Google Scholar 

  9. ARBONA, J. M., AIME, J. P., and ELEZGARAY, J. Modeling the mechanical properties of DNA nanostructures. Physical Review E, 86(5), 051912 (2012)

    Article  Google Scholar 

  10. STREY, H. H., PARSEGIAN, V. A., and PODGORNIK, R. Equation of state for DNA liquid crystals: fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters, 78(5), 895–898 (1997)

    Article  Google Scholar 

  11. GANG, B. Mechanics of biomolecules. Journal of the Mechanics and Physics of Solids, 50(11), 2237–2274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. BUSTAMANTE, C., BRYANT, Z., and SMITH, S. B. Ten years of tension: single-molecule DNA mechanics. nature, 421(6921), 423–427 (2003)

    Article  Google Scholar 

  13. ZHANG, N. H. and SHAN, J. Y. An energy model for nanomechanical deflection of cantilever-DNA chip. Journal of the Mechanics and Physics of Solids, 56(6), 2328–2337 (2008)

    Article  MATH  Google Scholar 

  14. SCHIFFELS, D., LIEDL, T., and FYGENSON, D. K. Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano, 7(8), 6700–6710 (2013)

    Article  Google Scholar 

  15. ZHOU, L. F., MARRAS, A. E., SU, H. J., and CASTRO, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano, 8(1), 27–34 (2014)

    Article  Google Scholar 

  16. LIU, Y. Z. and XUE, Y. Stability analysis of helical rod based on exact Cosserat model. Applied Mathematics and Mechanics (English Edition), 32(5), 603–612 (2011) https://doi.org/10.1007/s10483-011-1442-8

    Article  MathSciNet  MATH  Google Scholar 

  17. STREY, H. H., PARSEGIAN, V. A., and PODGORNIK, R. Equation of state for polymer liquid crystals: theory and experiment. Physical Review E, 59(1), 999–1008 (1999)

    Article  Google Scholar 

  18. BAUMANN, C. G., BLOOMFIELD, V. A., SMITH, S. B., BUSTAMANTE, C., and BLOCK, S. M. Stretching of single collapsed DNA molecules. Biophysical Journal, 78(4), 1965–1978 (2000)

    Article  Google Scholar 

  19. OBERMAYER, B. and FREY, E. Tension dynamics and viscoelasticity of extensible wormlike chains. Physical Review E, 80, 040801 (2009)

    Article  Google Scholar 

  20. LU, W., LI, X. B., ZHANG, C. Y., and ZHANG, N. H. The model of torsional rigidity of DNA nanotube (in Chinese). Chinese Quarterly of Mechanics, 39(1), 33–38 (2018)

    Google Scholar 

  21. ZHOU, H. J., ZHANG, Y., and OUYANG, Z. C. Bending and base-stacking interactions in double-stranded DNA. Physical Review Letters, 82(22), 4560–4563 (1999)

    Article  Google Scholar 

  22. WANG, J. Z. and LI, R. H. Stretching strongly confined semiflexible polymer chain. Applied Mathematics and Mechanics (English Edition), 35(10), 1233–1238 (2014) https://doi.org/10.1007/s10483-014-1862-9

    Article  Google Scholar 

  23. WU, C. X., ZHANG, N. H., ZHANG, C. Y., and WU, J. Z. Regulation of thermoelastic properties of concave-packaged DNA adsorption films and its relevant microcantilever detection signals. Acta Mechanica Sinica (English Series), 37(4), 705–711 (2021)

    Article  MathSciNet  Google Scholar 

  24. MARKO, J. F. and SIGGIA, E. D. Stretching DNA. Macromolecules, 28(26), 8759–8770 (1995)

    Article  Google Scholar 

  25. WANG, J. Z., QIAN, J., and GAO, H. J. Stability of molecular adhesion mediated by confined polymer repellers and ligand-receptor bonds. Molecular and Cellular Biomechanics, 5(1), 19–25 (2008)

    Google Scholar 

  26. ODIJK, T. Stiff chains and filaments under tension. Macromolecules, 28(20), 7016–7018 (1995)

    Article  Google Scholar 

  27. MANNING, G. S. The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophysical Journal, 91(10), 3607–3616 (2006)

    Article  Google Scholar 

  28. GEGGIER, S., KOTLYAR, A., and VOLOGODSKII, A. Temperature dependence of DNA persistence length. Nucleic Acids Research, 39(4), 1419–1426 (2011)

    Article  Google Scholar 

  29. BAUMANN, C. G., SMITH, S. B., BLOOMFIELD, V. A., and BUSTAMANTE, C. Ionic effects on the elasticity of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6185–6190 (1997)

    Article  Google Scholar 

  30. STRICK, T. R., ALLEMAND, J. F., BENSIMON, D., and CROQUETTE, V. Stress-induced structural transitions in DNA and proteins. Annual Review of Biophysics and Biomolecular Structure, 29(1), 523–543 (2000)

    Article  MATH  Google Scholar 

  31. CHENG, C. L., GONG, B., and QIAN, J. Mechanical responses of crosslinked biopolymer networks (in Chinese). Applied Mathematics and Mechanics, 37(5), 441–458 (2016)

    Google Scholar 

  32. JOSHI, H., KAUSHIK, A., SEEMAN, N. C., and MAITI, P. K. Nanoscale structure and elasticity of pillared DNA nanotubes. ACS Nano, 10(8), 7780–7791 (2016)

    Article  Google Scholar 

  33. XIAO, H. DNA elastic nonlinearities: remarkable combination of high compliance and high rigidity (in Chinese). Journal of Shanghai University (Nature Science), 18(5), 441–447 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenghui Zhang.

Additional information

Citation: LIU, H. L., ZHANG, N. H., and LU, W. Multiscale tensegrity model for the tensile properties of DNA nanotubes. Applied Mathematics and Mechanics (English Edition), 44(3), 397–410 (2023) https://doi.org/10.1007/s10483-023-2965-8

Project supported by the National Natural Science Foundation of China (Nos. 12172204, 11772182, 11272193, and 10872121), the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018), and the Natural Science Foundation of Shanghai of China (No. 22Z00142)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, N. & Lu, W. Multiscale tensegrity model for the tensile properties of DNA nanotubes. Appl. Math. Mech.-Engl. Ed. 44, 397–410 (2023). https://doi.org/10.1007/s10483-023-2965-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2965-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation