Skip to main content
Log in

Streptomyces xiangluensis sp. nov., a novel actinomycete isolated from soil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinomycete, designated strain NEAU-LA29T, was isolated from soil collected from Xianglu Mountain and subjected to a polyphasic taxonomic study. Based on a polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological and physiological characterisation, the isolate has been affiliated to the genus Streptomyces. 16S rRNA gene sequence analysis showed that the isolate is closely related to Streptomyces vastus JCM4524T (98.8% identity) and Streptomyces cinereus DSM43033T (97.9%). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and low DNA–DNA relatedness values enabled the strain to be differentiated from these closely related species of the genus Streptomyces. Thus, strain NEAU-LA29T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces xiangluensis sp. nov. is proposed. The type strain is NEAU-LA29T (= CGMCC 4.7466T = DSM 105786T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? Biotechnologia 1995:13–34

    Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot (Tokyo) 58:1–26

    Article  Google Scholar 

  • Collins MD (1985) Chemical methods in bacterial systematics. In: Goodfellow M, Minnikin DE (eds) Isoprenoid quinone analyses in bacterial classification and identification. Academic Press, London, pp 267–284

    Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42

    Article  CAS  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315

    Article  CAS  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

    Article  CAS  Google Scholar 

  • Hatano K, Nishii T, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA-DNA hybridization and sequences of gyr B, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529

    Article  CAS  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  Google Scholar 

  • Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408

    Article  CAS  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KL (1964) Inter-society color council–national bureau of standards color-name charts illustrated with centroid colors. National Bureau of Standards, Washington, DC

    Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B et al (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104

    Article  CAS  Google Scholar 

  • Labeda DP, Dunlap CA, Rong XY, Huang Y, Doroghazi JR, Ju KS, Metcalf WW (2017) Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 110:563–583

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206

    Article  CAS  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Piao CY, Zheng WW, Li Y, Liu CX, Jin LY, Song W, Yan K, Wang XJ, Xiang WS (2017) Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 199(7):963–970

    Article  CAS  Google Scholar 

  • Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 35:7–18

    Article  CAS  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and Bacteria. Antonie Van Leeuwenhoek 110:455–456

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Waksman SA (1961) The Actinomycetes, Classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins, Baltimore

    Google Scholar 

  • Waksman SA (1967) The actinomycetes: a summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492

    Google Scholar 

  • Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 [English translation of Microbiology (Beijing)]

    CAS  Google Scholar 

  • Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169

    Article  CAS  Google Scholar 

  • Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng Z, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7

    Article  Google Scholar 

  • Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Article  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Natural Youth Science Foundation of China (No. 31701858), Youth innovation talent program for general undergraduate colleges of Heilongjiang Province (UNPYSCT-2017017), the Heilongjiang Postdoctoral Fund (LBH-Z17015) and the ‘Young Talents’ Project of Northeast Agricultural University (17QC14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjing Wang or Wensheng Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, D., Jiang, H. et al. Streptomyces xiangluensis sp. nov., a novel actinomycete isolated from soil. Antonie van Leeuwenhoek 111, 2249–2256 (2018). https://doi.org/10.1007/s10482-018-1114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1114-9

Keywords

Navigation