Skip to main content
Log in

Acidovorax lacteus sp. nov., isolated from a culture of a bloom-forming cyanobacterium (Microcystis sp.)

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel Gram-negative, rod-shaped and motile bacterial strain, designated strain M36T, was isolated from a culture of a bloom-forming cyanobacterium, Microcystis sp., collected from a eutrophic lake in Korea. Its taxonomic position was investigated by using a polyphasic taxonomic approach. The isolate was found to grow aerobically at 15–42 °C (optimum 25 °C), pH 7.0–11.0 (optimum pH 8.0) and in the presence of 0–1.0% (w/v) NaCl (optimum 0% NaCl) on R2A medium. The phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain M36T is closely related to Acidovorax anthurii DSM 16745T (98.1%), Acidovorax konjaci DSM 7481T (97.7%) and Acidovorax avenae DSM 7227T (97.0%) and also formed a clear phylogenetic lineage with other Acidovorax species. DNA–DNA relatedness between strain M36T and the closely related species of the genus Acidovorax was <30%. The major fatty acid components identified included summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:0 ω7c and/or C18:0 ω6c). The DNA G+C content of strain M36T was determined to be 66.8 mol%. Based on above polyphasic evidence, strain M36T is concluded to represent a new species of genus Acidovorax, for which the name Acidovorax lacteus sp. nov. is proposed. The type strain is M36T (=KCTC 52220T = JCM 31890T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Choi JH, Kim MS, Roh SW, Bae JW (2010) Acidovorax soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 60:2715–2718. doi:10.1099/ijs.0.019661-0

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Baek SH, Wang L, Lee HG, Cui C, Lee ST, Im WT (2012) Streptomyces panacagri sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 62:780–785. doi:10.1099/ijs.0.029942-0

    Article  CAS  PubMed  Google Scholar 

  • Dastager SG, Mawlankar R, Mual P, Verma A, Krishnamurthi S, Joseph N, Shouche YS (2015) Bacillus encimensis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 65:1421–1425. doi:10.1099/ijs.0.000114

    Article  CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229. doi:10.1099/00207713-39-3-224

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi:10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Gardan L, Dauga C, Prior P, Gillis M, Saddler GS (2000) Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 50:235–246. doi:10.1099/00207713-50-1-235

    Article  CAS  PubMed  Google Scholar 

  • Gardan L, Stead DE, Dauga C, Gillis M (2003) Acidovorax valerianellae sp. nov., a novel pathogen of lamb’s lettuce [Valerianella locusta (L.) Laterr]. Int J Syst Evol Microbiol 53:795–800. doi:10.1099/ijs.0.02404-0

    Article  CAS  PubMed  Google Scholar 

  • Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368. doi:10.1021/es1008938

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heylen K, Lebbe L, De Vos P (2008) Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 58:73–77. doi:10.1099/ijs.0.65387-0

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Ko SR, Cui Y, Lee CS, Oh HM, Ahn CY, Lee HG (2016) Pusillimonas caeni sp. nov., isolated from a sludge sample of a biofilm reactor. Antonie van Leeuwenhoek. doi:10.1007/s10482-016-0782-6

    Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  • Li D, Rothballer M, Schmid M, Esperschutz J, Hartmann A (2011) Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 61:2589–2594. doi:10.1099/ijs.0.025296-0

    Article  CAS  PubMed  Google Scholar 

  • Ramanan R, Kang Z, Kim BH, Cho DH, Jin L, Oh HM, Kim HS (2015) Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res 8:140–144. doi:10.1016/j.algal.2015.02.003

    Article  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456. doi:10.1007/s10482-017-0841-7

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Schaad NW, Postnikova E, Sechler A, Claflin LE, Vidaver AK, Jones JB, Agarkova I, Ignatov A, Dickstein E, Ramundo BA (2008) Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst Appl Microbiol 31:434–446. doi:10.1016/j.syapm.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  • Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer K, Kämpfer P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22:205–214. doi:10.1016/s0723-2020(99)80067-8

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20. doi:10.1016/j.aquaculture.2008.05.007

    Article  CAS  Google Scholar 

  • Srivastava A, Singh S, Ahn CY, Oh HM, Asthana RK (2013) Monitoring approaches for a toxic cyanobacterial bloom. Environ Sci Technol 47:8999–9013. doi:10.1021/es401245k

    Article  CAS  PubMed  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128. doi:10.1111/j.1574-6968.1984.tb01388.x

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarrand JJ, Groschel DH (1982) Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaneechoutte M, Janssens M, Avesani V, Delmee M, Deschaght P (2013) Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to Acidovorax avenae. Int J Syst Evol Microbiol 63:2203–2206. doi:10.1099/ijs.0.046102-0

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Xue S, Zhang D, Zhang Q, Wen S, Kong D, Yan C, Cong W (2015) Construction and characteristics of artificial consortia of Scenedesmus obliquus-bacteria for S. obliquus growth and lipid production. Algal Res 12:436–445. doi:10.1016/j.algal.2015.10.002

    Article  Google Scholar 

  • Wayne L, Brenner D, Colwell R, Grimont P, Kandler O, Krichevsky M, Moore L, Moore W, Murray R, Stackebrandt E (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. doi:10.1099/00207713-37-4-463

    Article  Google Scholar 

  • Willems A, Falsen E, Pot B, Jantzen E, Hoste B, Vandamme P, Gillis M, Kersters K, De Ley J (1990) Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398. doi:10.1099/00207713-40-4-384

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Goor M, Thielemans S, Gillis M, Kersters K, De Ley J (1992) Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 42:107–119. doi:10.1099/00207713-42-1-107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Core Technology Development Program for the Oceans and the Polar Regions of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (2016M1A5A1027453). This work was supported by the KRIBB Research Initiative Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yong Ahn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, SJ., Cui, Y., Ko, SR. et al. Acidovorax lacteus sp. nov., isolated from a culture of a bloom-forming cyanobacterium (Microcystis sp.). Antonie van Leeuwenhoek 110, 1199–1205 (2017). https://doi.org/10.1007/s10482-017-0892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0892-9

Keywords

Navigation