Skip to main content
Log in

The PVC superphylum: exceptions to the bacterial definition?

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The PVC superphylum is a grouping of distinct phyla of the domain bacteria proposed initially on the basis of 16S rRNA gene sequence analysis. It consists of a core of phyla Planctomycetes, Verrucomicrobia and Chlamydiae, but several other phyla have been considered to be members, including phylum Lentisphaerae and several other phyla consisting only of yet-to-be cultured members. The genomics-based links between Planctomycetes, Verrucomicrobia and Chlamydiae have been recently strengthened, but there appear to be other features which may confirm the relationship at least of Planctomycetes, Verrucomicrobia and Lentisphaerae. Remarkably these include the unique planctomycetal compartmentalized cell plan differing from the cell organization typical for bacteria. Such a shared cell plan suggests that the common ancestor of the PVC superphylum members may also have been compartmentalized, suggesting this is an evolutionarily homologous feature at least within the superphylum. Both the PVC endomembranes and the eukaryote-homologous membrane-coating MC proteins linked to endocytosis ability in Gemmata obscuriglobus and shared by PVC members suggest such homology may extend beyond the bacteria to the Eukarya. If so, either our definition of bacteria may have to change or PVC members admitted to be exceptions. The cases for and against considering the PVC superphylum members as exceptions to the bacteria are discussed, and arguments for them as exceptions presented. Recent critical analysis has favoured convergence and analogy for explaining eukaryote-like features in planctomycetes and other PVC organisms. The case is made for constructing hypotheses leaving the possibility of homology and evolutionary links to eukaryote features open. As the case of discovery of endocytosis-like protein uptake in planctomycetes has suggested, this may prove a strong basis for the immediate future of experimental research programs in the PVC scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht W, Fischer A et al (1987) Verrucomicrobium spinosum, an eubacterium representing an ancient line of descent. Syst Appl Microbiol 10:57–62

    Article  CAS  Google Scholar 

  • Belzer C, de Vos WM (2012) Microbes inside—from diversity to function: the case of Akkermansia. ISME J 6(8):1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Zeggel B et al (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47(2):471–481

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Jenkins C et al (2004) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21(7):1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Cho JC, Vergin KL et al (2004) Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 6(6):611–621

    Article  PubMed  CAS  Google Scholar 

  • Choi A, Yang SJ et al (2013) Lentisphaera marina sp. nov., and emended description of the genus Lentisphaera. Int J Syst Evol Microbiol 63(Pt 4):1540–1544

    Article  PubMed  CAS  Google Scholar 

  • Choo YJ, Lee K et al (2007) Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum Verrucomicrobia. Int J Syst Evol Microbiol 57(Pt 3):532–537

    Article  PubMed  CAS  Google Scholar 

  • de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8(5):395–403

    Article  PubMed  Google Scholar 

  • DeGrasse JA, DuBois KN et al (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8(9):2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Devos DP (2012) Regarding the presence of membrane coat proteins in bacteria: confusion? What confusion? BioEssays 34(1):38–39

    Article  PubMed  Google Scholar 

  • Devos D, Dokudovskaya S et al (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2(12):e380

    Article  PubMed  Google Scholar 

  • Dunfield PF, Yuryev A et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Tamas I et al (2012) Electing a candidate: a speculative history of the bacterial phylum OP10. Environ Microbiol 14(12):3069–3080

    Article  PubMed  Google Scholar 

  • Everard A, Belzer C et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071

    Article  PubMed  CAS  Google Scholar 

  • Fieseler L, Horn M et al (2004) Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl Environ Microbiol 70(6):3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2010) Protein uptake by bacteria: an endocytosis-like process in the planctomycete Gemmata obscuriglobus. Commun Integr Biol 3(6):572–575

    Article  PubMed  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9(6):403–413

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2012) Keys to eukaryality: planctomycetes and ancestral evolution of cellular complexity. Front Microbiol 3:167

    Article  PubMed  Google Scholar 

  • Fuerst JA, Sagulenko E (2013) Nested bacterial boxes: nuclear and other intracellular compartments in planctomycetes. J Mol Microbiol Biotechnol 23(1–2):95–103

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88(18):8184–8188

    Article  PubMed  CAS  Google Scholar 

  • Glockner FO, Kube M et al (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100(14):8298–8303

    Article  PubMed  CAS  Google Scholar 

  • Glockner J, Kube M et al (2010) Phylogenetic diversity and metagenomics of candidate division OP3. Environ Microbiol 12(5):1218–1229

    Article  PubMed  Google Scholar 

  • Greub G, Raoult D (2002) Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl Environ Microbiol 68(6):3076–3084

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2007) Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology 153(Pt 8):2648–2654

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Article  Google Scholar 

  • Gupta RS, Bhandari V et al (2012) Molecular signatures for the PVC clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of bacteria provide insights into their evolutionary relationships. Front Microbiol 3:327

    PubMed  Google Scholar 

  • Hedlund BP, Gosink JJ et al (1997) Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie Van Leeuwenhoek 72(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Hou S, Makarova KS et al (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Article  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM et al (1998a) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    PubMed  CAS  Google Scholar 

  • Hugenholtz P, Pitulle C et al (1998b) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180(2):366–376

    PubMed  CAS  Google Scholar 

  • Jenkins C, Kedar V et al (2002) Gene discovery within the planctomycete division of the domain bacteria using sequence tags from genomic DNA libraries. Genome Biol 3(6): RESEARCH0031

    Google Scholar 

  • Jenkins C, Samudrala R et al (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci USA 99(26):17049–17054

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Glockner FO et al (2011) Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl Environ Microbiol 77(16):5826–5829

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Waldmann J et al (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194(23):6419–6430

    Article  PubMed  CAS  Google Scholar 

  • Kamneva OK, Liberles DA et al (2010) Genome-wide influence of indel substitutions on evolution of bacteria of the PVC superphylum, revealed using a novel computational method. Genome Biol Evol 2:870–886

    Article  PubMed  Google Scholar 

  • Kamneva OK, Knight SJ et al (2012) Analysis of genome content evolution in PVC bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle. Genome Biol Evol 4(12):1375–1390

    Article  PubMed  CAS  Google Scholar 

  • Khadem AF, Pol A et al (2010) Nitrogen fixation by the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. Microbiology 156(Pt 4):1052–1059

    Article  PubMed  CAS  Google Scholar 

  • König E, Schlesner H et al (1984) Cell-wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138(3):200–205

    Article  Google Scholar 

  • Kostanjsek R, Strus J et al (2004) Candidatus Rhabdochlamydia porcellionis, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol 54(Pt 2):543–549

    Article  PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Baulina OI et al (2009) Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 59(Pt 2):357–364

    Article  PubMed  CAS  Google Scholar 

  • Lee KC, Webb RI et al (2009) Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol 9:5

    Article  PubMed  Google Scholar 

  • Lienard J, Croxatto A et al (2011) Estrella lausannensis, a new star in the Chlamydiales order. Microbes Infect 13(14–15):1232–1241

    Article  PubMed  CAS  Google Scholar 

  • Liesack W, Stackebrandt E (1989) Evidence for unlinked rrn operons in the planctomycete Pirellula marina. J Bacteriol 171(9):5025–5030

    PubMed  CAS  Google Scholar 

  • Liesack W, Konig H et al (1986) Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group. Arch Microbiol 145(4):361–366

    Article  CAS  Google Scholar 

  • Limam RD, Bouchez T et al (2010) Detection of WWE2-related Lentisphaerae by 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate. Can J Microbiol 56(10):846–852

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MR, Webb RI et al (1995) Effects of fixative and buffer on morphology and ultrastructure of a fresh-water planctomycete, Gemmata obscuriglobus. J Microbiol Methods 21(1):45–54

    Article  Google Scholar 

  • Lindsay MR, Webb RI et al (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143:739–748

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI et al (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175(6):413–429

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne TG, Sagulenko E et al (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107(29):12883–12888

    Article  PubMed  CAS  Google Scholar 

  • Martin-Galiano AJ, Oliva MA et al (2011) Bacterial tubulin distinct loop sequences and primitive assembly properties support its origin from a eukaryotic tubulin ancestor. J Biol Chem 286(22):19789–19803

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Adams NE et al (2006) l, l-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci USA 103(47):17909–17914

    Article  PubMed  CAS  Google Scholar 

  • McInerney JO, Martin WF et al (2011) Planctomycetes and eukaryotes: a case of analogy not homology. BioEssays 33(11):810–817

    Article  PubMed  CAS  Google Scholar 

  • Ouellette SP, Karimova G et al (2012) Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol Microbiol 85(1):164–178

    Article  PubMed  CAS  Google Scholar 

  • Palleja A, Garcia-Vallve S et al (2009) Adaptation of the short intergenic spacers between co-directional genes to the Shine-Dalgarno motif among prokaryote genomes. BMC Genomics 10:537

    Article  PubMed  Google Scholar 

  • Patt TE, Hanson RS (1978) Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol 134(2):636–644

    PubMed  CAS  Google Scholar 

  • Pearson A, Budin M et al (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 100(26):15352–15357

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer M, Rosati G et al (2007) Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol Biol Evol 24(7):1439–1442

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer M, Rappl K et al (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J Bacteriol 190(9):3192–3202

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer M, Ladinsky MS et al (2011) Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 9(12):e1001213

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Heijmans K et al (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450(7171):874–878

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Muramatsu M et al (2013) Oligosphaera ethanolica gen. nov., sp. nov., an anaerobic, carbohydrate-fermenting bacterium isolated from methanogenic sludge, and description of Oligosphaeria classis nov. in the phylum Lentisphaerae. Int J Syst Evol Microbiol 63(Pt 2):533–539

    Article  PubMed  CAS  Google Scholar 

  • Rinke C, Schwientek P et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437

    Google Scholar 

  • Santarella-Mellwig R, Franke J et al (2010) The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8(1):e1000281

    Article  PubMed  Google Scholar 

  • Santarella-Mellwig R, Pruggnaller S et al (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11(5):e1001565

    Article  PubMed  CAS  Google Scholar 

  • Schlesner H (1987) Verrucomicrobium spinosum gen. nov., sp.nov., a fimbriated prosthecate bacterium. Syst Appl Microbiol 10:54–56

    Article  Google Scholar 

  • Schlieper D, Oliva MA et al (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA 102(26):9170–9175

    Article  PubMed  CAS  Google Scholar 

  • Schouten S, Bowman JP et al (2000) Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiol Lett 186(2):193–195

    Article  PubMed  CAS  Google Scholar 

  • Sinninghe Damste JS, Rijpstra WI et al (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J 272(16):4270–4283

    Article  PubMed  CAS  Google Scholar 

  • Speth DR, van Teeseling MC et al (2012) Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in planctomycetes and verrucomicrobia. Front Microbiol 3:304

    PubMed  Google Scholar 

  • Stackebrandt E, Wehmeyer U et al (1986) 16S ribosomal RNA- and cell wall analysis of Gemmata obscuriglobus, a new member of the order Planctomycetales. FEMS Microbiol Lett 37(3):289–292

    Article  CAS  Google Scholar 

  • Staley JT, Bouzek H et al (2005) Eukaryotic signature proteins of Prosthecobacter dejongeii and Gemmata sp. Wa-1 as revealed by in silico analysis. FEMS Microbiol Lett 243(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Pelletier E et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440(7085):790–794

    Article  PubMed  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18(10):464–470

    Article  PubMed  CAS  Google Scholar 

  • Teeling H, Lombardot T et al (2004) Evaluation of the phylogenetic position of the planctomycete Rhodopirellula baltica SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees. Int J Syst Evol Microbiol 54(Pt 3):791–801

    Article  PubMed  CAS  Google Scholar 

  • Teh AH, Saito JA et al (2011) Hell’s Gate globin I: an acid and thermostable bacterial hemoglobin resembling mammalian neuroglobin. FEBS Lett 585(20):3250–3258

    Article  PubMed  CAS  Google Scholar 

  • Thomas V, Casson N et al (2006) Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 8(12):2125–2135

    Article  PubMed  CAS  Google Scholar 

  • Thrash JC, Cho JC et al (2010) Genome sequence of Lentisphaera araneosa HTCC2155T, the type species of the order Lentisphaerales in the phylum Lentisphaerae. J Bacteriol 192(11):2938–2939

    Article  PubMed  CAS  Google Scholar 

  • van Niftrik L, Jetten MS (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76(3):585–596

    Article  PubMed  Google Scholar 

  • van Niftrik LA, Fuerst JA et al (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233(1):7–13

    Article  PubMed  Google Scholar 

  • van Niftrik L, Geerts WJ et al (2008) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190(2):708–717

    Article  PubMed  Google Scholar 

  • van Niftrik L, van Helden M et al (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium Candidatus Kuenenia stuttgartiensis. Mol Microbiol 77(3):701–715

    Article  PubMed  Google Scholar 

  • van Teeseling MC, Neumann S et al (2013) The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria. J Mol Microbiol Biotechnol 23(1–2):104–117

    Article  PubMed  Google Scholar 

  • Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60(5):495–506

    PubMed  CAS  Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17(3):241–249

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jenkins C et al (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl Environ Microbiol 68(1):417–422

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Hatch TP et al (1986) Eubacterial origin of chlamydiae. J Bacteriol 167(2):570–574

    PubMed  CAS  Google Scholar 

  • Welter-Stahl L, Ojcius DM et al (2006) Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 8(6):1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Wertz JT, Kim E et al (2012) Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol 78(5):1544–1555

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI, Rogozin IB et al (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8

    Article  PubMed  CAS  Google Scholar 

  • Yee B, Lafi FF et al (2007) A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the Bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species. BMC Evol Biol 7:37

    Article  PubMed  Google Scholar 

  • Yee B, Sagulenko E et al (2011) Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. Microbiology 157(Pt 7):2012–2021

    Article  PubMed  CAS  Google Scholar 

  • Yee B, Sagulenko E et al (2012) Electron tomography of the nucleoid of Gemmata obscuriglobus reveals complex liquid crystalline cholesteric structure. Front Microbiol 3:326

    Article  PubMed  Google Scholar 

  • Yen TY, Pal S et al (2005) Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Biochemistry 44(16):6250–6256

    Article  PubMed  CAS  Google Scholar 

  • Yildirim S, Yeoman CJ et al (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE 5(11):e13963

    Article  PubMed  Google Scholar 

  • Yoon J, Matsuo Y et al (2007a) Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum Verrucomicrobia, isolated from marine sand. Int J Syst Evol Microbiol 57(Pt 9):2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Yoon J, Yasumoto-Hirose M et al (2007b) Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum Verrucomicrobia isolated from seawater in Japan. Int J Syst Evol Microbiol 57(Pt 5):959–963

    Article  PubMed  CAS  Google Scholar 

  • Yoon J, Yasumoto-Hirose M et al (2007c) Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum Verrucomicrobia, isolated from seawater by in situ cultivation. Int J Syst Evol Microbiol 57(Pt 7):1377–1385

    Article  PubMed  Google Scholar 

  • Zoetendal EG, Plugge CM et al (2003) Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53(Pt 1):211–215

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Fuerst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuerst, J.A. The PVC superphylum: exceptions to the bacterial definition?. Antonie van Leeuwenhoek 104, 451–466 (2013). https://doi.org/10.1007/s10482-013-9986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9986-1

Keywords

Navigation