Skip to main content
Log in

Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

An Erratum to this article was published on 19 March 2011

Abstract

A novel actinobacterium, designated PNP1T, was isolated from a wastewater treatment plant at a pesticide factory by selective enrichment with para-nitrophenol. The strictly aerobic strain PNP1T grew with para-nitrophenol as the sole carbon and energy source. Metabolism of para-nitrophenol resulted in the stoichiometric release of nitrite. When incubated with both para-nitrophenol and acetate, para-nitrophenol was degraded and utilized as growth substrate prior to acetate. When grown on acetate (in the absence of ammonium) both nitrite and nitrate served as nitrogen sources, nitrate being quantitatively reduced to nitrite which accumulated in cultures during aerobic growth. Cells were coccoid and stained Gram-positive, were non-motile and did not form endospores. Colonies of strain PNP1T on agar medium were bright yellow, circular and smooth. The dominant menaquinone was MK-8(H2) (54%) and the major cellular fatty acid was anteiso C15:0 (75%). Strain PNP1T grew optimally at 27°C, at pH 8-8.5, at salinities 3% (w/v) NaCl, yet exhibited a substantial halotolerance with growth occurring at salinities up to 17% (w/v) NaCl. In addition to para-nitrophenol, a range of sugars, short chain fatty acids and alcohols served as electron donors for growth. The DNA G + C mol% was 68%. The genotypic and phenotypic properties suggest that strain PNP1T represents a novel species of the actinobacterial genus Citricoccus for which the name Citricoccus nitrophenolicus is proposed. It is the first member of this genus that has been reported to hydrolyze and grow on para-nitrophenol. The type strain is PNP1T (=DSM 23311T = CCUG 59571T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aelion CM, Swindoll CM, Pfaender F (1987) Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol 53:2212–2217

    PubMed  CAS  Google Scholar 

  • Altenburger P, Kampfer P, Schumann P, Steiner R, Lubitz W, Busse H-J (2002a) Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:2095–2100

    Article  PubMed  CAS  Google Scholar 

  • Altenburger P, Kampfer P, Schumann P, Vybiral D, Lubitz W, Busse HJ (2002b) Georgenia muralis gen. nov., sp nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:875–881

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol 46:50–54

    PubMed  CAS  Google Scholar 

  • Brucker MC (1986) Gram staining—a useful laboratory technique. J Nurse-Midwifery 31:156–158

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophysic Res Commun 270:733–740

    Article  CAS  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  PubMed  CAS  Google Scholar 

  • Coutu C, Martineau G, Guy C, Samson R (2003) Characterization of an organic filter medium for the biofiltration treatment of air contaminated with 1, 2-dichlorobenzene. J Chem Tech Biotechnol 78:907–917

    Article  CAS  Google Scholar 

  • Donlon BA, Razo-Flores E, Lettinga G, Field JA (1996) Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 51:439–449

    Article  PubMed  CAS  Google Scholar 

  • Errampalli D, Tresse O, Lee H, Trevors JT (1999) Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiol Ecol 30:229–236

    Article  PubMed  CAS  Google Scholar 

  • Gemini VL, Gallego A, de Oliveira VM, Gomez CE, Manfio GP, Korol SE (2005) Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. Int Biodet Biodegrad 55:103–108

    Article  CAS  Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 159–228

    Chapter  Google Scholar 

  • Ingvorsen K, Jørgensen BB (1984) Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Mirobiol 139:61–66

    Article  CAS  Google Scholar 

  • Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    PubMed  CAS  Google Scholar 

  • Kalsch W, Knacker T, Danneberg G, Studinger G, Franke C (1999) Biodegradation of [14C]-4-nitrophenol in a sediment-water simulation test. Int Biodeter Biodegrad 44:65–74

    Article  CAS  Google Scholar 

  • Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a Gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902

    Article  PubMed  CAS  Google Scholar 

  • Knudsen L, Kristensen GH, Jørgensen PE, Jepsen S-E (2000) Reduction of the content of organic micropollutants in digested sludge by a post-aeration process—a full-scale demonstration. Water Sci Technol 42:111–118

    CAS  Google Scholar 

  • Kulkarni M, Chaudhari A (2006) Biodegradation of p-nitrophenol by P. putida. Bioresource Technol 97:982–988

    Article  CAS  Google Scholar 

  • Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ1100. Environ Sci Technol 39:3330–3337

    Article  PubMed  CAS  Google Scholar 

  • Leung KT, Moore M, Lee H, Trevors JT (2005) Effect of carbon starvation on p-nitrophenol degradation by a Moraxella strain in buffer and river water. FEMS Microbiol Ecol 51:237–245

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Chen HH, Zhang YQ, Kim CJ, Park DJ, Lee JC, Xu LH, Jiang CL (2005) Citricoccus alkalitolerans sp nov., a novel actinobacterium isolated from a desert soil in Egypt. Int J Syst Evol Microbiol 55:87–90

    Article  PubMed  CAS  Google Scholar 

  • Løkke H (1985) Degradation of 4-nitrophenol in two Danish soils. Environ Pollut Ser A 38:171–181

    Article  Google Scholar 

  • Löser C, Oubelli MA, Hertel T (1998) Growth kinetics of the 4-nitrophenol degrading strain Pseudomonas putida PNP1. Acta Biotechnol 18:29–41

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Luque M, Castillo F (1991) Inhibition of aconitase and fumarase by nitrogen compounds in Rhodobacter capsulatus. Arch Microbiol 155:149–152

    Article  Google Scholar 

  • Meng F-X, Yang X-C, Yu P-S, Pan JM, Wang C-S, Xu X-W, Wu M (2010) Citricoccus zhacaiensis sp. nov., isolated from a bioreactor for saline wastewater treatment. Int J Syst Evol Microbiol 60:495–499

    Article  PubMed  CAS  Google Scholar 

  • Mogensen GL, Kjeldsen KU, Ingvorsen K (2005) Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulfate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Vivián C, Cárdenas J, Blasco R, Castillo F (1986) In vivo short-term inhibition of nitrogenase by nitrate in Rhodopseudomonas capsulata E1F1. FEMS Microbiol Lett 34:105–109

    Google Scholar 

  • PAN (2008) The pesticide action network (PAN) pesticide database: www.pesticideinfo.org

  • Perry LL, Zylstra GJ (2007) Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189:7563–7572

    Article  PubMed  CAS  Google Scholar 

  • Powers WM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758

    PubMed  CAS  Google Scholar 

  • Prakash D, Chauhan A, Jain RK (1996) Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia. Biochem Biophys Res Commun 224:375–381

    Article  PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) Silva a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Qiu X-H, Bai W-Q, Zhong Q-Z, Li M, He F-Q, Li B-T (2006) Isolation and characterization of a bacterial strain of the genus Orchrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994

    Article  PubMed  CAS  Google Scholar 

  • Roldan MD, Blasco R, Caballero FJ, Castillo F (1998) Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Arch Microbiol 160:36–42

    Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Schäfer J, Martin K, Kämpfer P (2010) Citricoccus parietis sp. nov., isolated from a mould-colonized wall and emended description of Citricoccus alkalitolerans Li et al. 2005. Int J Syst Evol Microbiol 60:271–274

    Article  PubMed  Google Scholar 

  • Singh B, Walker A (2006) Microbial degradation of organophosphorus compopunds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1981) Phenotypic characterization. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  PubMed  CAS  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    PubMed  CAS  Google Scholar 

  • Spain JC, Pritchard PH, Bourquin AW (1980) Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl Environ Microbiol 40:726–734

    PubMed  CAS  Google Scholar 

  • Spain JC, van Veld PA, Monti CA, Pritchard PH, Cripe CR (1984) Comparison of p-nitrophenol biodegradation in field and laboratory test systems. Appl Environ Microbiol 48:944–950

    PubMed  CAS  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (1995) Principles of fermentation technology, 2nd edn. Pergamon, Oxford, p 96

    Google Scholar 

  • Tomei MC, Annesini MC, Luberti R, Cento G, Senia A (2003) Kinetics of 4-nitrophenol biodegradation in a sequencing batch reactor. Water Res 37:3803–3814

    Article  PubMed  CAS  Google Scholar 

  • Trapido M, Kallas J (2000) Advanced oxidation processes for the degradation and detoxification of 4-nitrophenol. Environ Technol 21:799–808

    Article  CAS  Google Scholar 

  • Uberoi V, Bhattacharya SK (1997) Toxicity and degradability of nitrophenols in anaerobic systems. Water Environ Res 69:146–156

    Article  CAS  Google Scholar 

  • Volskay VT, Grady CPL (1990) Respiration inhibition kinetic analysis. Wat Res 24:863–874

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by a joint grant from Cheminova A/S, Central Denmark Region and The Aarhus University Research Foundation (AUFF). Thanks are due to Tove Wiegers for excellent technical assistance and to Inger Skov and Bo Breinbjerg for providing samples and information concerning the wastewater treatment plant at Cheminova A/S. Thanks are also due to J. P. Euzéby for providing the etymology of the species name. We are also indebted to the Editor and two anonymous reviewers for suggestions and comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjeld Ingvorsen.

Additional information

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain PNP1T is GU797177.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10482-011-9572-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M.B., Kjeldsen, K.U. & Ingvorsen, K. Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002. Antonie van Leeuwenhoek 99, 489–499 (2011). https://doi.org/10.1007/s10482-010-9513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9513-6

Keywords

Navigation