Skip to main content

Advertisement

Log in

Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces

  • Review Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Gram-positive bacteria, notably Bacillus and Streptomyces, have been used extensively in industry. However, these microorganisms have not yet been exploited for the production of the biodegradable polymers, polyhydroxyalkanoates (PHAs). Although PHAs have many potential applications, the cost of production means that medical applications are currently the main area of use. Gram-negative bacteria, currently the only commercial source of PHAs, have lipopolysaccharides (LPS) which co-purify with the PHAs and cause immunogenic reactions. On the other hand, Gram- positive bacteria lack LPS, a positive feature which justifies intensive investigation into their production of PHAs. This review summarizes currently available knowledge on PHA production by Gram- positive bacteria especially Bacillus and Streptomyces. We hope that this will form the basis of further research into developing either or both as a source of PHAs for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dcw:

dry cell weight

HB:

hydroxybutyrate

HHp:

hydroxyheptanoate

HHx:

hydroxyhexanoate

HO:

hydroxyoctanoate

HP:

hydroxypyvalic acid

HV:

hydroxyvalerate

LPS:

lipopolysaccharide

mcl:

medium chain length

PHA:

Polyhydroxyalkanoate

phaA :

gene encoding β-ketothiolase

phaB :

gene encoding acetoacetyl-CoA reductase

phaC :

gene encoding PHA synthase

phaR :

gene encoding a subunit of the PHA synthase

ROS:

reactive oxygen species

scl:

short chain length

SOD:

superoxide dismutase

References

  • Alvarez HM, Kalscheuer R, Steinbuchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223

    Article  PubMed  CAS  Google Scholar 

  • Amara AA, Rehm BH (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 374:413–421

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Williams DR, Dawes EA, Ewing DF (1995) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Rhodococcus ruber. Can J Microbiol 41:4–13

    Article  CAS  Google Scholar 

  • Anderson AJ, Williams DR, Taidi B, Dawes EA, Ewing DF (1992) Studies on copolyester synthesis by Rhodococcus ruber and factors influencing the molecular mass of polyhydroxybutyrate accumulated by Methylobacterium extorquens and Alcaligenes eutrophus. FEMS Microbiol Lett 103:93–101

    Article  CAS  Google Scholar 

  • Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-beta-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  PubMed  CAS  Google Scholar 

  • Browne N, Dowds BCA (2002) Acid stress in the food pathogen Bacillus cereus. J Appl Microbiol 92:404–414

    Article  PubMed  CAS  Google Scholar 

  • Caballero KP, Karel SF, Register RA (1995) Biosynthesis and characterization of hydroxybutyrate-hydroxycaproate copolymers. Int J Biol Macromol17:86–92

    Article  PubMed  CAS  Google Scholar 

  • Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic streptomyces isolate. Biotechnol Lett 26:15–19

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydrxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Konig KH, Lafferty RM (1991) Occurrence of poly-D(−)-3-hydroxyalkanoates in the genus Bacillus. FEMS Microbiol Lett 84:173–176

    CAS  Google Scholar 

  • Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998)␣Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64:177–186

    Article  PubMed  CAS  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  • Doi Y, Segawa A, Nakamura S, Kunioka M (1990) Production of biodegradable copolyesters by Alcaligenes eutrophus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer Press, Dordrecht, Netherlands, pp 37–48

    Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chemie Rapid Comm 8:631–635

    Article  CAS  Google Scholar 

  • Dunlop WF, Robards AW (1973) Ultrastructural study of poly-β-hydroxybutyrate granules from Bacillus cereus. J Bacteriol 114:1271–1280

    PubMed  CAS  Google Scholar 

  • Ellar D, Lundgren DG, Okamura K, Marchessault RH (1968) Morphology of poly-β-hydroxybutyrate granules. J Mol Biol 35:489–502

    Article  PubMed  CAS  Google Scholar 

  • Emeruwa AC (1981) Isolation and metabolism of glycogen and poly-β-hydroxybutyrate in Nocardia asteroides at different developemental stages. Ann Microbiol 132B:13–21

    CAS  Google Scholar 

  • Emeruwa AC, Hawirko RZ (1973) Poly-β-hydroxybutyrate metabolism during growth and sporulation of Clostridium botulinum. J Bacteriol 116:989–993

    PubMed  CAS  Google Scholar 

  • Fuchtenbusch B, Fabritius D, Waltermann M, Steinbuchel A (1998) Biosynthesis of novel copolyesters containing 3-hydroxypivalic acid by Rhodococcus ruber NCIMB 40126 and related bacteria. FEMS Microbiol Lett 159:85–92

    CAS  Google Scholar 

  • Furst UP, Madkour MH, Mayer F, Steinbuchel A (1994) Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxy alkanoic acid granules in Rhodococcus ruber. J Bacteriol 176:4328–4337

    Google Scholar 

  • Furst UP, Madkour MH, Mayer F, Steinbuchel A (1995) Identification of the region of a 14- kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 177:2513–2523

    Google Scholar 

  • Garton NJ, Gilleron M, Brando T, Dan HH, Giguere S, Puzo G, Prescott JF, Sutcliffe IC (2002) A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J Biol Chem 277:31722–31733

    Article  PubMed  CAS  Google Scholar 

  • Gibson KJC, Gilleron M, Constant P, Puzo G, Nigou J, Besra GS (2003) Structural and functional features of Rhodococcus ruber lipoarabinomannan. Microbiology 149:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res156:201–207

    Article  PubMed  CAS  Google Scholar 

  • Griebel R, Smith Z, Merrick JM (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7:3676–3681

    Article  PubMed  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Williams RD, Dawes EA, Ewing DF (1991) Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88

    Article  PubMed  CAS  Google Scholar 

  • Herndon KPS, Petersen DJ, Bennett GN (1995) Characterisation of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824. Gene 154:81–85

    Article  Google Scholar 

  • Hori K, Kaneko M, Tanji Y, Xing XH, Unno H (2002) Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl Microbiol Biotechnol 59:211–216

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Shimada A, Yokoyama K, Ito E (1989) Structure and glycosylation of lipoteichoic acids in Bacillus strains. J Bacteriol 171:424–429

    PubMed  CAS  Google Scholar 

  • Jia Y, Kappock J, Frick T, Sinskey AJ, Stubbe J (2000) Lipase provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 39:3927–3936

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Yuan W, Wodzinska J, Park C, Sinskey AJ, Stubbe J (2001) Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry 40:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Kannan LV, Rehacek Z (1970) Formation of poly-β- hydroxybutyrate by Actinomycetes. Indian J Biochem 7:126–129

    PubMed  CAS  Google Scholar 

  • Kim HJ, Kim DY, Nam JS, Bae KS, Rhee YH (2003) Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83:183–189

    Article  PubMed  CAS  Google Scholar 

  • Klingbeil B, Kroppenstedt RM, Jendrossek D (1996) Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol Lett 142: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Kominek LA, Halvorson HO (1965) Metabolism of poly-b -hydroxybutyrate and acetoin in Bacillus cereus. J␣Bacteriol 90:1251–1259

    PubMed  CAS  Google Scholar 

  • Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–357

    Article  PubMed  CAS  Google Scholar 

  • Law KH, Cheng YC, Leung YC, Lo WH, Chua H, Yu HF (2003) Construction of recombinant Bacillus subtilis strains for polyhydroxyalkanoates synthesis. Biochem Eng J 16:203–208

    Article  CAS  Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-ß-hydroxybutyric acid. J Bacteriol 82:33–36

    PubMed  CAS  Google Scholar 

  • Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  • Lee SY, Choi JI, Han K, Song JY (1999) Removal of endotoxin during purification of poly(3-hydroxybutyrate) from Gram-negative bacteria. Appl Environ Microbiol 65:2762–2764

    PubMed  CAS  Google Scholar 

  • Lemoigne M (1926) Produits de deshydration et de polymerisation de l’ acide b-oxybutyrique. Bulletin de la société de chimie biologique 8:770–782

    CAS  Google Scholar 

  • Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  PubMed  CAS  Google Scholar 

  • Lundgren DG, Pfister RM, Merrick JM (1964) Structure of poly-β-hydroxybutyric acid granules. J Gen Microbiol 34:441–446

    PubMed  CAS  Google Scholar 

  • Macrae RM, Wilkinson JF (1958) Poly-β-hydroxybutyrate metabolism in washed suspension of Bacillus cereus␣and Bacillus megaterium. J Gen Microbiol 19:210–222

    PubMed  CAS  Google Scholar 

  • Mahishi LH, Rawal SK (2002) Poly(3-hydroxybutyrate)(PHB) synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens PHB biosynthesis genes: effect of various carbon and nitrogen sources. Microbiol Res 157:1–9

    Article  Google Scholar 

  • Manna A, Banarjee R, Paul AK (1999) Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces. Curr Microbiol 39:153–158

    Article  PubMed  CAS  Google Scholar 

  • McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181:585–592

    PubMed  CAS  Google Scholar 

  • McCool GJ, Cannon MC (2001) Pha C and Pha R are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243

    Article  PubMed  CAS  Google Scholar 

  • McCool GJ, Fernandez T, Li N, Cannon MC (1996) Polyhydroxyalkanoate inclusion-body growth and proliferation in Bacillus megaterium. FEMS Microbiol Lett 138:41–48

    Article  CAS  Google Scholar 

  • Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993). Microbial degradation of poly(3-hydroxybutyrate) and poly(3hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238

    PubMed  CAS  Google Scholar 

  • Misaki A, Czuma I, Yamamura Y (1977) Structural and immunochemical studies of D-arabino-D-mannans and D-mannans of Mycobacterium tuberculosis and other Mycobacterium species. J Biochem 82:1759–1770

    PubMed  CAS  Google Scholar 

  • Muh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J (1999) PHA synthase from Chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochemistry 38:826–837

    Article  PubMed  CAS  Google Scholar 

  • Nakata HM (1963) Effect of pH on intermediates produced during growth and sporulation of Bacillus cereus. J Bacteriol 86:577–581

    PubMed  CAS  Google Scholar 

  • Packter NM, Flatman S (1983) Characterization of acetoacetyl-CoA reductase(3-oxoreductase)from Streptomyces coelicolor: its possible role in polyhydroxybutyrate biosynthesis. Biochem Soc Trans 11:598–599

    CAS  Google Scholar 

  • Pieper U, Steinbuchel A (1992) Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the gram positive bacterium Rhodococcus ruber. FEMS Microbiol Lett 96:73–80

    Article  CAS  Google Scholar 

  • Pirttijarvi TSM, Ahonen LM, Maunuksela LM, Salkinoja-Salonen MS (1998) Bacillus cereus in whey process. Int J Food Microbiol 44:31–41

    Article  PubMed  CAS  Google Scholar 

  • Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147:3353–3358

    PubMed  CAS  Google Scholar 

  • Ramachander TVN, Rohini D, Belhekar A, Rawal SK (2002) Synthesis of PHB by recombinant Escherichia coli harboring an approximately 5 kb genomic DNA fragment from Streptomyces aureofaciens NRRL 2209. In J Biol Macromol 31:63–69

    Article  CAS  Google Scholar 

  • Ranade N, Vining CL (1993) Accumulation of intracellular carbon reserves in relation to chloramphinicol biosynthesis by Streptomyces venezuelae. Can J Microbiol 39:377–383

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA, Antonio RV, Speikermann P, Amara AA, Steinbuchel A (2002) Molecular characterization of the poly(3-hydoxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594:178–190

    PubMed  CAS  Google Scholar 

  • Reusch RN (1999) Streptomyces lividans potassium channel contains poly-(R)-3-hydroxybutyrate and inorganic polyposphate. Biochemistry 38:15666–15672

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN (2002) Non-storage poly-(R)-3-hydroxyalkanoates (complexed PHAs) in prokaryotes and eukaryotes. In: Doi Y, Steinbuchel A (eds) Biopolymers. Wiley-VCH, Weinheim Germany, pp 123–171

    Google Scholar 

  • Roussel A, Canaan S, Egloff MP, Riviere M, Dupuis L,Verger R, Cambillau C (1999) Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem 274:16995–17002

    Article  PubMed  CAS  Google Scholar 

  • Sahoo S, Rao KK, Suresh AK, Suraishkumar GK (2004) Intracellular reactive oxygen species mediate suppression of sporulation in Bacillus subtilis under shear stress. Biotechnol Bioeng 87:81–89

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Doi Y (1994) Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol 16:99–104

    Article  PubMed  CAS  Google Scholar 

  • Satoh Y, Minamoto N, Tajima K, Munekata M (2002) Polyhydroxyalkanoate synthase from Bacillus sp. INT005 is composed of PhaC and PhaR. J Biosci Bioeng 94:343–350

    Article  PubMed  CAS  Google Scholar 

  • Schmack G, Gorenflo V, Steinbuchel A (1998) Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31:644–649

    Article  CAS  Google Scholar 

  • Shamala TR, Chandrashekar A, Vijayendra SV, Sharma L (2003) Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J Appl Microbiol 94:369–374

    Article  PubMed  CAS  Google Scholar 

  • Slepecky RA, Law JH (1961) Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42

    PubMed  CAS  Google Scholar 

  • Steinbuchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant of Alcaligens eutrophus. Appl Environ Microbiol 37:1–6

    Article  Google Scholar 

  • Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Stubbe J, Tian J (2003) Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20:445–457

    Article  PubMed  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Pol Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sutcliffe IC (1994) The lipoteichoic acids and lipoglycans of gram-positive bacteria: a chemotaxonomic perspective. Syst Appl Microbiol 17:467–480

    Google Scholar 

  • Sutcliffe IC (1995) Identification of a lipoarabinomannan-like lipoglycan in Corynebacterium matruchotii. Arch Oral Biol 40:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC, Shaw N (1991) Atypical lipoteichoic acids of gram-positive bacteria. J Bacteriol 173:7065–7069

    PubMed  CAS  Google Scholar 

  • Szewcyk E, Mikucki J (1989) Poly-β-hydroxybutyric acid in Staphylococci. FEMS Microbiol Lett 61:279–284

    Google Scholar 

  • Szewczyk E (1992) Poly-β-hydroxybutyric acid in Staphylococci. FEMS Microbiol Rev 103:165–168

    Google Scholar 

  • Szewczyk E, Mikucki J (1989) Poly-β-hydroxybutyric acid in Staphylococci. FEMS Microbiol Lett 61:279–284

    CAS  Google Scholar 

  • Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. J Biosci Bioeng 95:77–81

    PubMed  CAS  Google Scholar 

  • Valentin H, Dennis D (1996) Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62:372–379

    PubMed  CAS  Google Scholar 

  • Verma S, Bhatia Y, Valappil SP, Roy I (2002) A possible role of poly-3-hydroxybutyric acid in antibiotic production in Streptomyces. Arch Microbiol 179:66–69

    Article  PubMed  CAS  Google Scholar 

  • Warhust AM, Fewson CA (1994) Biotransformation catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Google Scholar 

  • Williams RD, Anderson AJ, Dawes EA, Ewing DF (1994) Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber: biosynthetic considerations. Appl Microbiol Biotechnol 40:717–723

    Article  CAS  Google Scholar 

  • Wong AL, Chua H, Yu PH (2000) Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes. Appl Biochem Biotechnol 86:843–857

    Article  Google Scholar 

  • Wu K, Chung L, Revill WP, Katz L, Reeves CD (2000) The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251:81–90

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Huang H, Hu GH, Chen J, Ho KP, Chen GQ (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie van Leeuwenhoek 80:111–118

    Article  PubMed  CAS  Google Scholar 

  • Zakharian E, Reusch RN (2004a) Functional evidence for a supramolecular structure for the Streptomyces lividans potassium channel KcsA. Biochem Biophys Res Comm 322:1059–1065

    Article  CAS  Google Scholar 

  • Zakharian E, Reusch RN (2004b) Streptomyces lividans potassium channel KcsA is regulated by the potassium electrochemical gradient. Biochem Biophys Res Comm 316:429–436

    Article  CAS  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Del Rev 53:5–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC, UK grant no. EP/C515617/1(P). S.P.Valappil was also provided financial support by the University of Westminster, London, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valappil, S.P., Boccaccini, A.R., Bucke, C. et al. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces . Antonie van Leeuwenhoek 91, 1–17 (2007). https://doi.org/10.1007/s10482-006-9095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9095-5

Keywords

Navigation