Skip to main content
Log in

Spirula—a window to the embryonic development of ammonoids? Morphological and molecular indications for a palaeontological hypothesis

Facies Aims and scope Submit manuscript

Abstract

Nautilus is not suitable as a model organism to infer biological functions, embryonic development, or mode of life in ammonoids. A brief review of the available morphological data is given and molecular data are added to discuss the usefulness of Spirula as a biological proxy for ammonoids. Indeed, there are many morphological hints indicating that Spirula could be a useful model organism for approaching the embryonic development of ammonoids. The molecular data seem to support this hypothesis. However, a universal model character of Spirula cannot be detected as, e.g., the mode of feeding probably differs between Spirula and ammonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Appellöf A (1893) Die Schalen von Sepia, Spirula und Nautilus. Studium über den Bau und das Wachstum. K Svenska Vetensk Akad Handl Stockholm 25:1–106

    Google Scholar 

  • Arnold JM, O’Dor R (1990) In vitro fertilization and embryonic development of oceanic squid. J Cephalopod Biol 1:21–36

    Google Scholar 

  • Bandel K (1982) Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1–198

    Google Scholar 

  • Bandel K (1990) Cephalopod shell structure and general mechanisms of shell formation. In: Carter JG (ed) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. 1, pp 97–115

  • Bandel K, von Boletzky S (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger 21:313–354

    Google Scholar 

  • Berthold T, Engeser T (1987) Phylogenetic analysis and systematization of the Cephalopoda (Mollusca). Verh Naturwiss Ver Hamb NF 29:187–220

    Google Scholar 

  • von Boletzky S (1989) Recent studies on spawning, embryonic development, and hatching in the Cephalopoda. Adv Mar Biol 25:85–115

    Google Scholar 

  • von Boletzky S (1998) Cephalopod eggs and egg masses. Oceanogr Mar Biol, Ann Rev 36:341–371

    Google Scholar 

  • von Boletzky S (1999) Brève mise au point sur la classification des céphalopodes actuels. Bull Soc Zool France 124:271–278

    Google Scholar 

  • von Boletzky S (2003) Biology of early life stages in cephalopod molluscs. Adv Mar Biol 44:144–203

    Google Scholar 

  • Bonnaud L, Boucher-Rodoni R, Monnerot M (1994) Phylogeny of decapod cephalopods based on partial 16s DNA nucleotide sequences. C R Hebd Séanc Acad Sci (III) 317:581–588

    CAS  Google Scholar 

  • Bonnaud L, Boucher-Rodoni R, Monnerot M (1996) Relationships of some coleoid cephalopods established by 3’end of the 16S rDNA and cytochrome oxidase III gene sequence comparison. Amer Malac Bull 12:87–90

    Google Scholar 

  • Bruun AF (1943) The biology of Spirula spirula (L.). Dana Rep 24:49

    Google Scholar 

  • Carlini DB, Graves JE (1999) Phylogenetic analysis of the cytochrome oxidase I sequences to determine higher level relationships within the coleoid cephalopods. Bull Mar Sci 64:57–76

    Google Scholar 

  • Carlini DB, Reece KS, Graves JE (2000) Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol Biol Evol 17:1353–1370

    CAS  PubMed  Google Scholar 

  • Chun C (1910) Spirula australis Lam. Ber Math-Phys Kl K Sächs Ges Wiss Leipzig 62:171–188

    Google Scholar 

  • Chun C (1915) Die Cephalopoden. 2. Teil: Myopsida, Octopoda. Wiss Ergeb Dt Tiefsee Exp 18:414–476

    Google Scholar 

  • Clarke MR (1966) A review of the systematics and ecology of oceanic squids. Adv Mar Biol 4:91–300

    Google Scholar 

  • Clarke MR (1970) Growth and development of Spirula spirula. J Mar Biol Ass UK 50:53–64

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1973) Floating mechanisms in modern and fossil cephalopods. Adv Mar Biol 11:197–268

    Google Scholar 

  • Doguzhaeva LA (1999) Early shell ontogeny in bactritoids and allied taxa: comparative morphology, shell wall ultrastructure, and phylogenetic implications. In: Histon K (ed) V Intern Symp Cephalopods—Present and Past, Vienna, Abstracts. Abh Geol Bundesanst 46:32

    Google Scholar 

  • Doguzhaeva LA, Mapes RH, Mutvei H (1999) A Late Carboniferous spirulid coleoid from the southern mid-continent (USA): shell wall ultrastructure and evolutionary implication. In: Oloriz F, Rodriguez-Tovar FJ (eds) Advancing Research on Living and Fossil Cephalopods. Kluwer Acad/Plenum Publ, New York, pp 47–57

    Google Scholar 

  • Doguzhaeva LA, Mapes RH, Mutvei H (2002) Beaks and radulae of Early Carboniferous goniatites. Lethaia 30:305–313

    Google Scholar 

  • Donovan D (1977) Evolution of the dibranchiate Cephalopoda. Symp Zool Soc London, 38:15–48

    Google Scholar 

  • Doyle P, Donovan D, Nixon M (1994) Phylogeny and systematics of the Coleoida. Palaeontol Contr Univ Kansas 5:1–15

    Google Scholar 

  • Dreyer H, Steiner G, Harper EM (2003) Phylogeny of Anomalodesmata (Mollusca: Bivalvia) inferred from 18S rDNA sequences. Zool J Linn Soc 139:229–246

    Article  Google Scholar 

  • Engeser T (1990a) Phylogeny of the fossil coleoid Cephalopoda (Mollusca). Berliner Geowiss Abh 124:123–191

    Google Scholar 

  • Engeser T (1990b) Major events in cephalopod evolution. In: Taylor PD, Larwood GP (eds) Major Evolutionary Radiations. Clarendon Press, Oxford, pp 119–138

    Google Scholar 

  • Engeser T (1996) The Position of the Ammonoidea within the Cephalopoda. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum Press, New York, pp 3–19

    Google Scholar 

  • Engeser T, Bandel K (1988) Phylogenetic classification of coleoid cephalopods. In: Wiedmann J, Kullmann J (eds) Cephalopods, Present and Past. Schweizerbart, Stuttgart, pp 105–115

    Google Scholar 

  • Engeser T, Keupp H (2002) Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34:79–96

    Article  Google Scholar 

  • Erben HK (1966) Über den Ursprung der Ammonoidea. Biol Rev 41:641–658

    CAS  PubMed  Google Scholar 

  • Flower RH (1961) Major divisions of the Cephalopoda. J Paleontology 35:569–574

    Google Scholar 

  • Gray JE (1845) On the animal of Spirula. Ann Nat Hist 15:57–261

    Google Scholar 

  • Harasewych MG, Adamkewicz SL, Blake JA, Saudek D, Spriggs T, Bult CJ (1997) Phylogeny and relationships of pleurotomariid gastropods (Mollusca: Gastropoda): an assessment based on partial 18S rDNA and cytochrome c oxidase I sequences. Mol Mar Biol Biotechnol 6:1–20

    CAS  PubMed  Google Scholar 

  • Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum Press, New York, pp 297–339

    Google Scholar 

  • House MR (1981) On the origin, classification and evolution of the early Ammonoidea. In: House MR, Senoir JR (eds) The Ammonoidea. Syst Assoc, London, pp 3–36

    Google Scholar 

  • House MR (1988) Major features of cephalopod evolution. In: Wiedmann J, Kullmann J (eds) Cephalopods, Present and Past. Schweizerbart, Stuttgart, pp 1–16

    Google Scholar 

  • House MR (1996) Juvenile goniatite survival strategies following Devonian extinction events. In: Hart MB (ed) Biotic Recovery from Mass Extinction Events. Geol Soc Spec Publ 102:163–185

    Google Scholar 

  • Jacobs DK, Landman NH (1993) Nautilus - a poor model for the function and behavior of ammonoids? Lethaia 26:101–111

    Google Scholar 

  • Jacobs DK, Landman NH (1994) Nautilus - model or muddle? Lethaia 27:95–96

    Google Scholar 

  • Keupp H (2000) Ammoniten. Thorbecke, Stuttgart, 165 pp

    Google Scholar 

  • Landman NH (1988) Early Ontogeny of Mesozoic Ammonites and Nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods, Present and Past. Schweizerbart, Stuttgart, pp 215–228

    Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum Press, New York, pp 343–405

    Google Scholar 

  • Lehmann U (1966) Dimorphismus bei Ammoniten der Ahrensburger Lias-Geschiebe. Paläont Z 40:26–55

    Google Scholar 

  • Lehmann U (1967) Ammoniten mit Kieferapparat und Radula aus Lias-Geschieben. Paläont Z 41:38–45

    Google Scholar 

  • Lu CC, Guerra A, Palumbo F, Summers WC (1992) Order Spioidea Naef, 1916. In: Sweeney MJ, Roper CFE, Mangold KM, Clarke MR, von Boletzky S (eds) “Larval” and juvenile cephalopods: A manual for their identification. Smithson Contr Zool 513:21–36

    Google Scholar 

  • Martin AW, Catala-Stucki I, Ward PD (1978) The growth rate and reproductive behaviour of Nautilus macromphalus. N Jb Geol Paläont Abh 156:207–225

    Google Scholar 

  • Mikami S, Okutani T (1977) Preliminary observations on maneuvering, feeding, copulating and spawning behaviours of Nautilus macromphalus in captivity. Venus 36:29–41

    Google Scholar 

  • Mutvei H (1964) On the shells of Nautilus and Spirula with notes on the shell secretion in cephalopod molluscs. Ark Zool 16:223–278

    Google Scholar 

  • Mutvei H (1975) The mode of life in ammonoids. Paläont Z 49:196–206

    Google Scholar 

  • Mutvei H, Reyment RA (1973) Buoyancy control and siphuncle function in ammonoids. Palaeontology 16:623–636

    Google Scholar 

  • Naef A (1921–1923) Die Cephalopoden (Systematik). Fauna Flora Golf Napoli 35(I-1):1–863[English translation, Jerusalem, Israel program for scientific translations, available from Smithsonian Institution Libraries, Washington, DC, 20560, USA]

  • Naef A (1922) Die fossilen Tintenfische. Fischer, Jena, 322 pp [English translation: Berl. Paläobiol. Abh.]

    Google Scholar 

  • Nesis KN (1987) Cephalopods of the world. Squids, cuttlefishes, octopuses and allies. TFH Publ, Neptune City, New Jersey, 351 pp

    Google Scholar 

  • Nixon M (1996) Morphology of the jaws and radula in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum Press, New York, pp 23–42

    Google Scholar 

  • Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford Univ Press, New York, 392 pp

    Google Scholar 

  • Norman M (2000) Cephalopods, a world guide. ConchBooks, Hackenheim, 318 pp

    Google Scholar 

  • Owen R (1832) Memoir on the pearly Nautilus (Nautilus Pompilius, Linn.) with illustrations of its external form and internal structure. Counc R Collage Surgeons, London

    Google Scholar 

  • Reyment RA (1980) Floating orientation of cephalopod shell models. Paleontology 23:931–936

    Google Scholar 

  • Schindewolf OH (1933) Vergleichende Morphologie und Phylogenie der Anfangskammern tetrabranchiater Cephalopoden, Vol. 148. Abh Preuss Geol Landesanst, NF, pp 1–115

    Google Scholar 

  • Saunders WB, Ward D (1994) Nautilus is not a model for the function and behaviour of ammonoids. Lethaia 27:47–48

    Google Scholar 

  • Tanabe K, Fakuda Y, Obata I (1980) Ontogenetic development and functional morphology in the early growth-stages of three Cretaceous ammonites. Bull Natn Sci Mus Ser C (Geol) 6:9–26

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH, Faulkner CJ (1993) Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas, U.S.A.-Implications for ammonoid embryology. Lethaia 26:215–224

    Google Scholar 

  • Teichert C (1988) Main Features of Cephalopod Evolution. In: Wilbur KM, Trueman ER, Clarke MR (eds) The Mollusca, 12. Paleontology and Neontology of Cephalopods. Academic Press, New York, pp 11–79

    Google Scholar 

  • Ward PD, von Boletzky S (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Ass UK 64:955–966

    Google Scholar 

  • Warnke K, Plötner J, Santana JI, Rueda MJ, Llinas O (2003) Reflections on the phylogenetic position of Spirula (Cephalopoda): Preliminary evidence from the 18S ribosomal RNA gene. Berliner Paläobiol Abh 3:253–260

    Google Scholar 

  • Willey A (1902) Zoological results, part IV. Cambridge Univ Press, Cambridge, 750 pp

    Google Scholar 

  • Winnepenninckx B, Reid D, Backeljau T (1998) Performance of 18S rRNA in littorinid phylogeny (Gastropoda: Caenogastropoda). J Mol Evol 47:586–596

    CAS  PubMed  Google Scholar 

  • Wollscheid E, Wägele H (1999) Initial results on the molecular phylogeny of the Nudibranchia (Gastropoda, Opisthobranchia) based on 18S rDNA data. Mol Phyl Evol 13:215–226

    Article  CAS  Google Scholar 

  • Young JZ (1977) Brain, behaviour and evolution of cephalopods. Symp Zool Soc London 38:377–434

    Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. S. V. Boletzky for discussion and correction of the manuscript. Helpful critical comments of Dr. A. Nützel improved the manuscript. This research was supported by grants WA 1454/1-1 and WA 1454/1-2 of the Deutsche Forschungsgemeinschaft to Kerstin Warnke and by fishing operations of the Canarian Institute of Marine Sciences (Instituto Canario de Ciencias Marinas)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Warnke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnke, K., Keupp, H. Spirula—a window to the embryonic development of ammonoids? Morphological and molecular indications for a palaeontological hypothesis. Facies 51, 60–65 (2005). https://doi.org/10.1007/s10347-005-0054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0054-9

Keywords

Navigation