Skip to main content

Advertisement

Log in

Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pohmann R, Speck O, Scheffler K (2016) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med 75(2):801–809

    Article  PubMed  Google Scholar 

  2. Uludag K, Muller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165

    Article  PubMed  Google Scholar 

  3. Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JL, Behrens TE, Glasser MF, Van Essen DC, Yacoub E, for the WU-Minn HCP Consortium (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80:80–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Setsompop K, Alagappan V, Gagoski B, Witzel T, Polimeni J, Potthast A, Hebrank F, Fontius U, SchmittF WL, Adalsteinsson A (2008) Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil. Magn Reson Med 60(6):1422–1432

    Article  PubMed  PubMed Central  Google Scholar 

  5. McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The human connectome project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245

    Article  PubMed  Google Scholar 

  6. Smeibidl P, Bird MD, Ehmler H, Dixon IR, Heinrich J, Hoffmann M, Kempfer S, Bole S, Toth J, Prokhnenko O, Lake B (2016) First hybrid manget for neutron-scattering at Helmholtz Zentrum Berlin. IEEE Trans Appl Supercond 25(3):1–6

    Article  Google Scholar 

  7. Martovetsky N, Michael P, Minervini J, Radovinsky A, Takayasu M, Thome R, Ando T, Isono T, Kato T, Nakajima N, Nishijima G, Nunoya Y, Sugimoto M, Takahashi Y, Tsuji H, Bessette D, Okuno K, Ricci M (2011) ITER CS model coil and CS insert test results. IEEE Trans Appl Supercond 11(1):2030–2033

    Article  Google Scholar 

  8. Lvovsky Y, Stautner EW, Zhang Z (2013) Novel technologies and configuration of superconducting magnets for MRI. Supercond Sci Technol 26:171

    Article  CAS  Google Scholar 

  9. Vedrine P, Aubert G, Beaudet F, Belorgey J, Berriaud C, Bredy P, Donati A, Dubois O, Gilgrass G, Juster FP, Meuris C, Molinie F, Nunio F, Payn A, Schild T, Scola L, Sinanna A (2010) Iseult/INUMAC whole body 11.7 T MRI magnet status. IEEE Trans Appl Supercond 20(3):696–701

    Article  CAS  Google Scholar 

  10. Bird MD, Dixon IR, Toth J (2014) Large, high-field magnet projects at the NHMFL. IEEE Trans Appl Supercond 25(3):4300606

    Google Scholar 

  11. Miller JR, Bird MD, Bonito-Oliva A, Eyssa Y, Kenney WJ, Painter T, Schneider-Muntau H-J, Summers LT, Van Sciver SW, Welton S, Wood RJ, Williams JEC, Bobrov E, Iwasa Y, Leupold M, Stejskal V, Weggel R (1994) An overview of the 45 T Hybrid magnet system for the new national high magnetic field laboratory. IEEE Trans Magn 30(4):1563–1571

    Article  Google Scholar 

  12. Markiewicz WD, Dixon IR, Swenson CA, Marshall WS, Painter TA, Bole ST, Cosmus T, Parizh M, King M, Ciancetta G (2000) 900 MHz wide bore NMR spectrometer magnet at NHMFL. IEEE Trans Appl Supercond 10(1):728–731

    Article  Google Scholar 

  13. Wilson MN (1983) Superconducting magnets. Oxford University Press, Oxford, p 46

    Google Scholar 

  14. Majkic G, Galstyan E, Selvamanickam V (2010) High performance 2G-HTS wire using a novel MOCVD system. Appl Supercond IEEE Trans Supercond 25(3):1–4

    Article  CAS  Google Scholar 

  15. Larbalestier DC, Jiang J, Trociewitz UP, Kametani F, Scheuerlein C, Dalban-Canassy M, Matras M, Chen P, Craig NC, Lee PJ, Hellstrom EE (2014) Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat Mater 13(4):375–381

    Article  CAS  PubMed  Google Scholar 

  16. Nakashima T, Yamazaki K, Kobayashi S, Kagiyama T, Kikuchi M, Takeda S, Osabe G, Fujikami J, Osamura J (2015) Drastic improvement in mechanical properties of DI-BSCCO wire with novel lamination material. Appl Supercond IEEE Trans Supercond 25(3):1–5

    Article  Google Scholar 

  17. Weijers HW, Markiewicz WD, Voran AJ, Gundlach SR, Sheppard WR, Jarvis B, Johnson ZL, Noyes PD, Lu J, Kandel H, Ba H, Gavrilin AV, Viouchkov YL, Larbalestier DC, Abraimov DV (2014) Progress in the development of a superconducting 32 T magnet with REBCO high field coils. Appl Supercond IEEE Trans Supercond 24(3):1–5

    Article  Google Scholar 

  18. Yanagisawa Y, Nakagome H, Hosono M, Hamada M, Kiyoshi T, Hobo F, Takahashi M, Yamazaki T, Maeda H (2008) Towards beyond-1 GHz solution NMR: internal 2H lock operation in an external current mode. J Magn Reson 192(2):329–337

    Article  CAS  PubMed  Google Scholar 

  19. Nishiyama Y, Pandey MK, Florian P, Fyon F, Hashi K,Ohki S, Nishijima G. Matsumoto S, Noguchi T,Deguchi T, Gotom A, Shimizu T, Maeda H,Takahashi M, Yanagisawa Y, Tanaka R, Nemoto T, Miyamoto T, Suematsu H, Saito K, Miki T (2015) 1020 MHz LTS/HTS NMR: II. Application to solid-state NMR. In: Presented at the 56th experimental nuclear magnetic resonance conference (ENC), Asilomar, CA

  20. van der Laan DC, Goodrich LF, Noyes P, Trociewitz UP, Godeke A, Abraimov D, Francis A, Larbalestier DC (2015) Engineering current density in excess of 100 A/mm2 at 20 T in CORC magnet cables containing RE-Ba2Cu3O7-δ tapes with 38 m thick substrates. Supercond Sci Technol 28:124001 (p 8)

    Article  CAS  Google Scholar 

  21. Godeke D, Cheng D, Dietderich DR, English CD, Felice H, Hannaford CR, Prestemon SO, Sabbi G, Scanlan RM, Hikichi Y, Nishioka J, Hasegawa T (2008) Development of wind-and-React bi-2212 accelerator magnet technology. IEEE Trans Appl Supercond 18(2):516–519

    Article  CAS  Google Scholar 

  22. Takayasu M, Chiesa L, Allen NC, Minervini JV (2016) Present status and recent development of the twisted stacked-tape cable (TSTC) conductor. IEEE Trans Appl Supercond. doi:10.1109/TASC.2016.252182723

    Google Scholar 

  23. Haiying L, Jun Xiao L (1996) Gradient coil mechanical vibration and image quality degradation. In: Proceedings of the society of magnetic resonance, p 1393

  24. Mansfield P, Chapman BL, Bowtell R, Glover P, Coxon R, Harvey PR (1995) Active acoustic screening: reduction of noise in gradient coils by Lorentz force balancing. Magn Reson Med 33(2):276–281

    Article  CAS  PubMed  Google Scholar 

  25. Jia F, Schultz G, Testud F, Wetz AM, Weber H, Littin S, Yu H, Hennig J, Zaitsev M (2016) Performance evaluation of matrix gradient coils. MAGMA 29(1):59–73

    Article  PubMed  Google Scholar 

  26. Stockmann JP, Witzel T, Blau JN, Polemini JR, Zhao W, Keil B, Wald LL (2013) Combined Shim RF array for highly efficient shimming of the brain at 7 T. In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, p 225

  27. Han H, Song AW, Trrung TK (2013) Integrated parallel reception, excitation and shimming (IPRESS). In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, p 664

  28. Stockmann JP, Witzel T, Keil B, Polimeni JR, Mareyam A, LaPierre C, Setsompop K, Wald L (2015) A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn Reson Med 75(1):441–451

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603

    Article  CAS  PubMed  Google Scholar 

  30. Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K (2009) Whole Body imaging at 7T: preliminary results. Magn Reson Med 61(1):244–248

    Article  PubMed  PubMed Central  Google Scholar 

  31. Katscher U, Börnert P, Leussler C, Van Den Brink JS (2003) Transmit sense. Magn Reson Med 49(1):144–150

    Article  PubMed  Google Scholar 

  32. Setsompop K, Alagappan V, Gagoski BA, Potthast A, Hebrank F, Fontius U, Franz Schmitt F, Wald LL, Adalsteinsson E (2009) Broadband slab selection with B1+ mitigation at 7 T via parallel spectral-spatial excitation. Magn Reson Med 61(2):493–500

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wiesinger F, de Moortele V, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP (2004) Parallel imaging performance as a function of field strength: an experimental investigation using electrodynamic scaling. Magn Reson Med 52(5):953–964

    Article  PubMed  Google Scholar 

  34. Guerin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, Nistler J, Wald LL (2015) Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics. Magn Reson Med 73(3):1137–1150

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grissom WA, Xu D, Kerr AB, Fessler JA, Noll DC (2009) Fast large-tip-angle multidimensional and parallel RF pulse design in MRI. IEEE Trans Med Imaging 28(10):1548–1559

    Article  PubMed  PubMed Central  Google Scholar 

  36. Padormo F, Beqiri A, Hajnal JV, Malik SJ (2015) Parallel transmission for ultrahigh-field imaging. NMR Biomed. doi:10.1002/nbm.3313

    PubMed  Google Scholar 

  37. Cloos MA, Wiggins C, Wiggins G, Sodickson D (2014) Plug and play parallel transmission at 7 and 9.4 Tesla based on principles from MR fingerprinting. In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, 21:542

  38. Winter L, Niendorf T (2015) On the electrodynamic constraints and antenna array design for human in vivo MR up to 70 Tesla and EPR up to 3 GHz. Proc Intl Soc Magn Reson Med 23:1807

    Google Scholar 

  39. Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31(3):1038–1050

    Article  CAS  PubMed  Google Scholar 

  40. Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R, Lüsebrink F, Schulze P, Speck O (2016) Motion correction in MRI of the brain. Phys Med Biol 61(5):R32–R56

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Beckett A, Verma A, Feinberg DA (2015) Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 122:281–287

    Article  PubMed  Google Scholar 

  42. Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One 10(7):e0133921. doi:10.1371/journal.pone.0133921.eCollection

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hoult DI, Richards R (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85

    Google Scholar 

  44. Cao Z, Park J, Cho ZÄ, Collins CM (2015) Numerical evaluation of image homogeneity, signal-to-noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14 T in an 8-channel transmit/receive array. J Magn Reson Imaging 41(5):1432–1439

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schepkin VD (2016) Sodium MRI of glioma in animal models at ultrahigh magnetic fields. NMR Biomed 29(2):175–186

    Article  CAS  PubMed  Google Scholar 

  46. Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16(4):1062–1067

    Article  PubMed  Google Scholar 

  47. Yacoub E, Harel N, Uğurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci 105(30):10607–10612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zimmermann J, Goebel R, De Martino F, van de Moortele P-F, Feinberg D, Adriany G, Chaimow D, Shmuel D, Uğurbil K, Yacoub E (2011) Mapping the organization of axis of motion selective features in human area MT using high-field fMRI. PLoS One 6(12):e28716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Martino F, Moerel M, Ugurbil K, Goebel R, Yacoub E, Formisano E (2015) Frequency preference and attention effects across cortical depths in the human primary cortex. Proc Natl Acad Sci USA 112:16036–16041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Muckli L, De Martino F, Vizoli L, Petro LS, Smith FW, Ugurbil K, Goebel R, Yacoub E (2015) Contextural feedback to superficial layers of V1. Curr Biol 25:2690–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Olman CA, Harel N, Feinberg DA, He S, Zang P, Ugurbil K, Yacoub E (2012) Layer-specific fMRI reflects different neuronal computations at different depths in human V1. PLoS One 7:e332536. doi:10.1371//journal.pone.0032536

    Article  CAS  Google Scholar 

  52. Nasr S, Polimeni JR, Tootell RB (2016) Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36(6):1841–1857

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heidemann RM, Anwander A, Feiweier T, Knösche TR, Turner R (2012) k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T. Neuroimage 60(2):967–978

    Article  PubMed  Google Scholar 

  54. Gorgolewski KJ, Mendes N, Wilfling D, Wladimirow E, Gauthier CJ, Bonnen T, Ruby FJ, Trampel R, Bazin PL, Cozatl R, Smallwood J, Margulies DS (2015) A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures. Sci Data 2:140054

    Article  PubMed  PubMed Central  Google Scholar 

  55. Goa PE, Koopmans PJ, Poser BA, Barth M, Norris DG (2014) BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla. Front Neurosci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  56. Setsompop K, Feinberg DA, Polimeni JR (2016) Rapid brain MRI acquisition techniques at ultra-high fields. NMR Biomed. doi:10.1002/nbm.3478

    PubMed  Google Scholar 

  57. Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 213(2):560–570

    Article  CAS  PubMed  Google Scholar 

  58. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  59. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582

    Article  PubMed  Google Scholar 

  60. Vu A, Auerbach E, Lenglet C, Moeller S, Sotiropoulos SN, Jbabdi S, Andersson J, Yacoub E, Ugurbil K (2015) High resolution whole brain diffusion imaging at 7T for the human connectome project. Neuroimage 122:318–331

    Article  CAS  PubMed  Google Scholar 

  61. Ford AA, Colon-Perez L, Triplett WT, Gullett JM, Mareci TH, FitzGerald DB (2013) Imaging white matter in human brainstem. Front Hum Neurosci 7:400

    Article  PubMed  PubMed Central  Google Scholar 

  62. Colon-Perez LM, King M, Parekh M, Boutzoukas A, Carmona E, Couret M, Klassen R, Mareci TH, Carney PR (2015) High-field magnetic resonance imaging of the human temporal lobe. Neuroimage Clin 9:58–68

    Article  PubMed  PubMed Central  Google Scholar 

  63. Leuze CW, Anwander A, Bazin PL, Dhital B, Stüber C, Reimann K, Geyer S, Turner R (2014) Layer-specific intracortical connectivity revealed with diffusion MRI. Cereb Cortex 24(2):328–339

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shemesh N, Dumez JÄ, Frydman L (2013) Longitudinal relaxation enhancement in 1H NMR spectroscopy of tissue metabolites via spectrally selective excitation. Chem A Eur J 19(39):13002–13008

    Article  CAS  Google Scholar 

  65. Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133(1):36–45, 49

    Article  CAS  PubMed  Google Scholar 

  66. Jones CK, Polders D, Hua J, Hoogduin HJ, Zhou J, van Zijl PCM (2012) In Vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T. Magn Reson Med 67(6):1579–1589

    Article  PubMed  PubMed Central  Google Scholar 

  67. Van Zijl P, Yadav N (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jones CK, Huang A, Xu J, Edden RA, Schär M, Hua J, Oskolkov N, Zacà D, Zhou J, McMahon MT, Pillai JJ, van Zijl PC (2013) Nuclear overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124

    Article  PubMed  Google Scholar 

  69. Lu A, Atkinson IC, Zhou XJ, Thulborn KR (2013) PCr/ATP ratio mapping of the human head by simultaneously imaging of multiple spectral peaks with interleaved excitations and flexible twisted projection imaging readout trajectories at 9.4 T. Magn Reson Med 69(2):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu X, Du F, Zhang N, Zhang Y, Lei H, Zhang X, Qiao H, Uğurbil K, Chen W (2009) Advanced in vivo heteronuclear MRS approaches for studying brain bioenergetics driven by Mitochondria. In: Hyder F (ed) Dynamic brain imaging: multi-modal methods and in vivo applications. Humana Press, New York, pp 317–357

    Chapter  Google Scholar 

  71. Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS (2015) Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR Biomed 28(6):607–623

    Article  CAS  PubMed  Google Scholar 

  72. Springer CS, Li X, Tudorica LA, Oh N, Roy SY-C, Chui AM, Naik ML, Holtorf ML, Afzala A, Rooney WD, Huang W (2014) Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR Biomed 27(7):760–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rooney WD, Sammi MK, Grinstead JW, Pollaro J, Selzer A, Li X, Springer CS (2013) Contrast reagent detection sensitivity increases with B0: 3T and 7T comparison of the human head. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol 21, p 1224

  74. Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Uğurbil K, Springer CS (2007) Magnetic field and tissue dependences of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318

    Article  CAS  PubMed  Google Scholar 

  75. Kiyatkin EA, Lenoir M (2012) Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation. J Neurophysiol 108(6):1669–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Valvassori SS, Calixto KV, Budni J, Resende WR, Varela RB, de Freitas KV, Gonçalves CL, Streck EL, Quevedo J (2013) Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain. J Neural Transmis 120(12):1737–1742

    Article  CAS  Google Scholar 

  77. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR (2010) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 63(6):1583–1593

    Article  PubMed  PubMed Central  Google Scholar 

  78. Thulborn KR, Lui E, Guntin J, Jamil S, Sun Z, Claiborne T, Atkinson IC (2016) Quantitative sodium MR imaging of the human brain at 9.4 Tesla provides assessment of tissue sodium concentration and cell volume fraction during normal ageing. Invited submission to special edition. NMR Biomed 29:137–143

    Article  CAS  PubMed  Google Scholar 

  79. Thulborn KR, Lu A, Atkinson IC, Damen F, Villano JL (2009) Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 19(4):615–624

    Article  PubMed  PubMed Central  Google Scholar 

  80. Qian Y, Zhao T, Zheng H, Weimer J, Boada FE (2012) High-resolution sodium imaging of human brain at 7 T. Magn Reson Med 68(1):227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fleysher L, Oesingmann N, Brown R, Sodickson DK, Wiggins GC, Inglese M (2013) Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 26(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Umathum R, Rösler MB, Nagel AM (2013) In vivo 39K MR imaging of human muscle and brain. Radiology 269(2):569–576

    Article  PubMed  Google Scholar 

  83. Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71(5):1819–1825

    Article  CAS  PubMed  Google Scholar 

  84. Nagel AM, Lehmann-Horn F, Weber M-A, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595

    Article  PubMed  Google Scholar 

  85. Schepkin VD, Choy IO, Budinger TF, Obayashi DY, Taylor SE, DeCampli WM, Amartur SC, Young JN (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39(4):557–563

    Article  CAS  PubMed  Google Scholar 

  86. Schepkin VD, Odintsov BM, Litvak I, Gor’kov PL, Brey WW, Neubauer A, Budinger TF (2015) Efficient detection of bound potassium and sodium using TQTPPI pulse sequence. In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, vol 23, p 2375

  87. Zhu XÄ, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18(2):83–103

    Article  CAS  PubMed  Google Scholar 

  88. Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733

    Article  CAS  PubMed  Google Scholar 

  89. Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O (2009) Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 28(9):1365–1374

    Article  PubMed  Google Scholar 

  90. van Lier AL, Brunner DO, Pruessmann KP, Klomp DW, Luijten PR, Lagendijk JJ, van den Berg CA (2012) B1+ Phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 67(2):552–561

    Article  PubMed  Google Scholar 

  91. van Lier AL, Raaijmakers A, Voigt T, Lagendijk JJW, Leijten PR, Katscher U, van den Berg CAT (2014) Electrical properties tomography in the human brain at 1.5, 3, and 7 T: a comparison study magnetic resonance in medicine. Magn Reson Med 71:354–363

    Article  PubMed  Google Scholar 

  92. Liu J, Zhang X, Van de Moortele P-F, Schmitter S, He B (2013) Determining electrical properties based on B1 fields measured in an MR scanner using a multi-channel transmit/receive coil: a general approach. Phys Med Biol 58(13):4395

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sodickson DK, Alon L, Deniz CM, Ben-Eliezer N, Cloos M, Sodickson LA, Collins CM, Wiggins GC, Novikov DS (2013) Generalized local Maxwell tomography for mapping of electrical property gradients and tensors. In: Proceedings of the 21st annual meeting of ISMRM, Salt Lake City, Utah, p 417575

  94. Budinger TF (1981) Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comput Assist Tomogr 5:800–811

    Article  CAS  PubMed  Google Scholar 

  95. Schenck JF (1992) Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann NY Acad Sci 649(1):285–301

    Article  CAS  PubMed  Google Scholar 

  96. National Research Council (2013) Current Status and future direction of high magnetic field science in the United States. National Academies Press, Washington, DC, Appendix F. pp 196–206

  97. Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele PF, Garwood M, Ugurbil K (2006) 9.4 T human MRI: preliminary results. Magn Reson Med 56(6):1274–1282

    Article  PubMed  PubMed Central  Google Scholar 

  98. Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging 32(1):82–87

    Article  PubMed  Google Scholar 

  99. Chakeres DW, Kangarlu A, Boudoulas H, Young DC (2003) Effect of static magnetic field exposure of up to 8 tesla on sequential human vital sign measurements. J Magn Reson Imaging 18:346–352

    Article  PubMed  Google Scholar 

  100. Atkinson IC, Renteria L, Holly Burd H, Neil H, Pliskin NH, Thulborn KR (2015) Safety of human MRI at static fields above the FDA 8T guideline: sodium imaging at 9.4T does not affect vital signs or cognitive ability (2015) Online access December 2015. http://indigo.uic.edu/bitstream/handle/10027/7232/94THumanSafety_prepress.pdf

  101. Budinger TF, Fischer H, Hentschel D, Reinfelder H-E, Schmitt F (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15(6):909–914

    Article  CAS  PubMed  Google Scholar 

  102. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12(1):2–19

    Article  CAS  PubMed  Google Scholar 

  103. Houpt TA, Pittman DW, Barranco JM, Brooks EH, Smith JC (2003) Behavioral effects of high-strength static magnetic fields on rats. J Neurosci 23(4):1498–1505

    CAS  PubMed  Google Scholar 

  104. Houpt TA, Cassell JA, Riccardi C, DenBleyker MD, Hood A, Smith JC (2007) Rats avoid high magnetic fields: dependence on an intact vestibular system. Physiol Behav 92(4):741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89:7683–7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Budinger TF, Glaeser RM (1977) Measurement of focus and spherical abberation of an electron microscope objective lens. Ultramicroscopy 2:31–41

    Article  Google Scholar 

  107. Hong FT (1995) Magnetic field effects on biomolecules, cells, and living organisms. Biosystems 36(3):187–229

    Article  CAS  PubMed  Google Scholar 

  108. Fukunaga M, Li T-Q, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci USA. 107(8):3834–3839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    Article  CAS  PubMed  Google Scholar 

  110. Berry MV, Geim AK (1997) Of flying frogs and levitrons. Eur J Phys 18:307–313

    Article  Google Scholar 

  111. Roth BJ, Basser PJ (2009) Mechanical model of neural tissue displacement during Lorentz effect imaging. Magn Reson Med 61:59–64

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wikswo JP, Barach JP (1980) An estimate of the steady magnetic field strength required to influence nerve conduction. IEEE Trans Biomed Eng 27(12):722–723

    Article  CAS  PubMed  Google Scholar 

  113. Tenforde TS (2005) Magnetically induced electric fields and currents in the circulatory system. Prog Biophys Mol Biol 87(2):279–288

    Article  PubMed  Google Scholar 

  114. d’Arsonval A (1896) Dispositifs pour la mesure des courants alternatifs de toutes fréquences. C R Soc Biol (Paris) 2:450–451

    Google Scholar 

  115. Lövsund P, Őberg PA, Nilsson SEG (1980) Magnetophosphenes: a quantitative analysis of thresholds. Med Biol Eng Comput 18(3):326–334

    Article  PubMed  Google Scholar 

  116. Keltner JR, Roos MS, Brakeman PR, Budinger TF (1990) Magnetohydrodynamics of blood flow. Magn Reson Med 16(1):139–149

    Article  CAS  PubMed  Google Scholar 

  117. Weiss J, Herrick RC, Taber KH, Contant C, Plishker GA (1992) Bio-effects of high magnetic fields: a study using a simple animal model. Magn Reson Imaging 10(4):689–694

    Article  CAS  PubMed  Google Scholar 

  118. Patel M, Williamsom RA, Dorevitch S, Buchanan S (2008) Pilot study investigating the effect of the static magnetic field from a 9.4-T MRI on the vestibular system. J Occup Environ Med 50(5):576–583

    Article  CAS  PubMed  Google Scholar 

  119. Theysohn JM, Maderwald S, Kraff O, Moenninghoff C, Ladd ME, Ladd SC (2008) Subjective acceptance of 7 Tesla MRI for human imaging. Magn Reson Mater Phys Biol Med 21(1–2):63–7294

    Article  Google Scholar 

  120. Glover P, Cavin I, Qian W, Bowtell R, Gowland P (2007) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28(5):349–361

    Article  CAS  PubMed  Google Scholar 

  121. van Nierop LEV, Slottje P, Zandvort MJV, De Vocht F, Kromhout H (2012) Effects of magnetic stray fields from a 7 Tesla MRI scanner on neurocognition: a double-blind randomised crossover study. Occup Environ Med 69(10):761–768

    Google Scholar 

  122. Cason AM, Kwon B, Smith JC, Houpt TA (2009) Labyrinthectomy abolishes the behavioral and neural response of rats to a high-strength static magnetic field. Physiol Behav 97(1):36–43

    Article  CAS  PubMed  Google Scholar 

  123. Roberts DC, Marcelli V, Gillen JS, Carey JP, Della Santina CC, Zee DS (2011) MRI magnetic field stimulates rotational sensors of the brain. Curr Biol 21(19):1635–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kassemi M, Deserranno D, Oas J (2005) Fluid-structural interactions in the inner ear. Comput Struct 83(2):181–189

    Article  Google Scholar 

  125. Mian OS, Li Y, Antunes A, Glover PM, Day BL (2016) Effect of head pitch and roll orientations on magnetically induced vertigo. J Physiol 594(4):1051–1067

    Article  CAS  PubMed  Google Scholar 

  126. Wolff S, Crooks LE, Brown P, Howard R, Painter RB (1980) Tests for DNA and chromosomal damage induced by nuclear magnetic resonance imaging. Radiology 136(3):707–710

    Article  CAS  PubMed  Google Scholar 

  127. Okano H (2008) Effects of static magnetic fields in biology: role of free radicals. Front Biosci 13:6106–6125

    Article  CAS  PubMed  Google Scholar 

  128. Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Progr Biophys Molecular Biol 87(2–3):185–204

    Article  Google Scholar 

  129. Miyakoshi J (2005) Effects of static magnetic fields relevant to human health. Progr Biophys Molecular Biol 87(2–3):213–223

    Article  CAS  Google Scholar 

  130. Vijayalaxmi FM, Speck O (2015) Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat Res 764:51–63

    Article  CAS  Google Scholar 

  131. Bras W, Diakun GP, Díaz JF, Maret G, Kramer H, Bordas J, Medrano FJ (1998) The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and X-ray fiber diffraction study. Biophys J 74:1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Denegre JM, Valles JM Jr, Lin K, Jordan WB, Mowry KL (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci USA 95(25):14729–14732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D (2005) Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 22(3):334–340

    Article  PubMed  Google Scholar 

  134. Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Molecular Struct 938:15–19

    Article  CAS  Google Scholar 

  135. Paul A-L, Ferl RJ, Meisel MW (2006) High magnetic field induced changes of gene expression in Arabidopsis. BioMagn Res Technol 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  136. Brand M, Ellmann S, Sommer M, May MS, Eller A, Wuest W, Engert C, Achenbach S, Kuefner MA, Baeuerle T, Lell M, Uder M (2015) Influence of cardiac MR imaging on DNA double-strand breaks in human blood lymphocytes. Radiology 277(2):406–412

    Article  PubMed  Google Scholar 

  137. Reddig A, Fatahi M, Friebe B, Guttek K, Hartig R, Godenschweger F, Roggenbuck D, Ricke J, Reinhold D, Speck O (2015) Analysis of DNA double-strand breaks and cytotoxicity after 7 Tesla magnetic resonance imaging of isolated human lymphocytes. PLoS One 10(7):e0132702. doi:10.1371/journal.pone.0132702 (eCollection 2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Fatahi M, Reddig A, Vijayalaxmi Friebe B, Hartig R, Prihoda TJ, Ricke J, Roggenbuck D, Reinhold D, Speck O (2016) DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T Magnetic Resonance Imaging. Neuroimage. doi:10.1016/j.neuroimage.2016.03.023

    PubMed  Google Scholar 

  139. Giovannelli L, Pitozzi V, Moretti S, Boddi V, Dolara P (2006) Seasonal variations of DNA damage in human lymphocytes: correlation with different environmental variables. Mutat Res 593(1–2):143–152

    Article  CAS  PubMed  Google Scholar 

  140. Télez M, Ortiz-Lastra E, Gonzalez AJ, Flores P, Huerta I, Ramírez JM, Barasoain M, Criado B, Arrieta I (2010) Assessment of the genotoxicity of atenolol in human peripheral blood lymphocytes: correlation between chromosomal fragility and content of micronuclei. Mutat Res 695(1–2):46–54

    Article  PubMed  CAS  Google Scholar 

  141. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity or repair, and induction of cancer. Proc Natl Acad Sci 100(22):12871–12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Winter L, Oezerdem C, Hoffmann W, van de Lindt T, Periquito J, Ji Y, Ghadjar P, Budach V, Wust P, Niendorf T (2015) Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz). Radiat Oncol 10:201

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Budinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budinger, T.F., Bird, M.D., Frydman, L. et al. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale. Magn Reson Mater Phy 29, 617–639 (2016). https://doi.org/10.1007/s10334-016-0561-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0561-4

Keywords

Navigation