Skip to main content
Log in

Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) regulates stomatal closure in response to water loss. Here, we examined the competence of guard cells to synthesize ABA, using two Arabidopsis ABA biosynthetic enzymes. 35S pro::AtNCED3-GFP and AAO3-GFP were introduced into guard cells of broad bean leaves. AtNCED3-GFP expression was detected at the chloroplasts, whereas green fluorescent protein (GFP) and AAO3-GFP were in the cytosol. The stomatal aperture was decreased in AtNCED3-GFP- and AAO3-GFP-transformed guard cells. This indicated that ABA biosynthesis is stimulated by heterologous expression of AtNCED3 and Arabidopsis aldehyde oxidase 3 (AAO3) proteins, which both seem to be regulatory enzymes for ABA biosynthesis in these cells. Furthermore, stomatal closure by the expression of AtNCED3 and AAO3 suggested that the substrates of the enzymes are present and native ABA-biosynthesis enzymes are active in guard cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Assmann SM (2004) Abscisic acid signal transduction in stomatal responses. In: Davies PJ (ed) Plant hormones—biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 391–412

    Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Hoffmann T, Teplova I, Grill E, Muller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219

    Article  PubMed  CAS  Google Scholar 

  • Else MA, Taylor JM, Atkinson CJ (2006) Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA. J Exp Bot 57:3349–3357

    Article  PubMed  CAS  Google Scholar 

  • Ghelis T, Dellis O, Jeannette E, Bardat F, Cornel D, Miginiac E, Rona JP, Sotta B (2000) Abscisic acid specific expression of RAB18 involves activation of anion channels in Arabidopsis thaliana suspension cells. FEBS Lett 474:43–47

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  PubMed  CAS  Google Scholar 

  • Harris MJ, Outlaw WH Jr, Mertens R, Weiler EW (1988) Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc Natl Acad Sci USA 85:2584–2588

    Article  PubMed  CAS  Google Scholar 

  • Hornberg C, Weiler E (1984) High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310:321–324

    Article  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203–4208

    Article  PubMed  CAS  Google Scholar 

  • Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Outlaw WH Jr (2003) Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22:503–529

    Article  Google Scholar 

  • Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479

    Article  Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, Luo M, Liu JH, Abrams SR, Hill RD (2004) Purification and characterization of a barley aleurone abscisic acid-binding protein. J Biol Chem 279:9922–9929

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A, Wu W, Tucker EB, Assmann SM (1994) Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci USA 91:4019–4023

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Leon-Kloosterziel KM, Koorneef M, Zeevart JA (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T (2000a) The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000b) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Cline K, McCarty DR (2001) Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant J 27:373–382

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki D, Yoshida S, Asami T, Kuchitsu K (2003) Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant J 35:129–139

    Article  PubMed  CAS  Google Scholar 

  • Zhang DP, Wu ZY, Li XY, Zhao ZX (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128:714–725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Y. Niwa (University of Shizuoka, Japan) for providing the GFP expression vector [35S::GFP pUC18 and pblue-sGFP (S65T) nos KS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomokazu Koshiba.

Additional information

V. Melhorn and K. Matsumi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figs. S1–3 (PPT 172 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melhorn, V., Matsumi, K., Koiwai, H. et al. Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba . J Plant Res 121, 125–131 (2008). https://doi.org/10.1007/s10265-007-0127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-007-0127-7

Keywords

Navigation