Skip to main content
Log in

The GL2 Main Conjecture for Elliptic Curves without Complex Multiplication

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

Let G be a compact p-adic Lie group, with no element of order p, and having a closed normal subgroup H such that G/H is isomorphic to Z p. We prove the existence of a canonical Ore set S* of non-zero divisors in the Iwasawa algebra Λ(G) of G, which seems to be particularly relevant for arithmetic applications. Using localization with respect to S*, we are able to define a characteristic element for every finitely generated Λ(G)-module M which has the property that the quotient of M by its p-primary submodule is finitely generated over the Iwasawa algebra of H. We discuss the evaluation of this characteristic element at Artin representations of G, and its relation to the G-Euler characteristics of the twists of M by such representations. Finally, we illustrate the arithmetic applications of these ideas by formulating a precise version of the main conjecture of Iwasawa theory for an elliptic curve E over Q, without complex multiplication, over the field F generated by the coordinates of all its p-power division points; here p is a prime at least 5 where E has good ordinary reduction, and G is the Galois group of F over Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ardakov and K. Brown, Primeness, Semiprimeness and localization in Iwasawa algebras, preprint (2004).

  2. H. Bass, Algebraic K-theory, Benjamin, New York (1968).

  3. P. Balister, Congruences between special values of L-functions (unpublished) (1998).

  4. N. Bourbaki, Commutative Algebra, Springer (1991).

  5. A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442–470.

    Google Scholar 

  6. D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients I, Doc. Math. 6 (2001), 501–570.

    Google Scholar 

  7. D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients II, Am. J. Math. 125 (2003), 475–512.

    Google Scholar 

  8. J. Coates and S. Howson, Euler characteristics and elliptic curves II, J. Math. Soc. Japan Proc. 53 (2001), 175–235.

    Google Scholar 

  9. J. Coates, P. Schneider, and R. Sujatha, Links between cyclotomic and GL2 Iwasawa theory, Doc. Math. Extra Volume: Kazuya Kato’s 50th birthday (2003), 187–215.

  10. J. Coates, P. Schneider, and R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (2003), 73–108.

    Google Scholar 

  11. J. Coates and R. Sujatha, Euler-Poincaré characteristics of abelian varieties, CRAS 329, Série I (1999), 309–313.

  12. J. Coates and R. Sujatha, Galois cohomology of elliptic curves, TIFR Lecture notes series, Narosa Publishing House (2000).

  13. P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable II, LNM 349, Springer (1973), 501–597.

  14. P. Deligne, Valeurs de fonctions L et périodes d’intégrales, Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions, Part 2, Amer. Math. Soc. (1979), 313–346.

  15. T. Dokchitser and V. Dokchitser, Numerical calculations in non-commutative Iwasawa theory, preprint (2004).

  16. T. Fisher, Descent calculations for the elliptic curves of conductor 11, Proc. Lond. Math. Soc. 86 (2003), 583–606.

  17. T. Fukaya and K. Kato, A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, to appear in Proceedings of the St. Petersburg Mathematical Society.

  18. R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85–99.

    Google Scholar 

  19. S. Howson, Euler characteristics as invariants of Iwasawa modules, Proc. Lond. Math. Soc. 85 (2002), 634–658.

  20. A. Huber and G. Kings, Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings of the ICM, Vol. II (Beijing, 2002) (2002), 149–162.

  21. K. Kato, K1 of some non-commutative completed group rings, preprint (2004).

  22. M. Lazard, Groupes analytiques p-adiques, Publ. Math., Inst. Hautes Étud. Sci. 26 (1965), 389–603.

    Google Scholar 

  23. B. Mazur, Rational points of abelian varieties in towers of number fields, Invent. Math. 18 (1972), 183–266.

    Google Scholar 

  24. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Math. 30, AMS (1987).

  25. J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften 323, Springer (2000).

  26. B. Perrin-Riou, Groupes de Selmer d’une courbe elliptique à multiplication complexe, Compos. Math. 43 (1981), 387–417.

    Google Scholar 

  27. K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25–68.

    Google Scholar 

  28. L. Schneps, On the μ-invariant of p-adic L-functions, J. Number Theory 25 (1987), 20–33.

    Google Scholar 

  29. J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413–420, Oeuvres II, 264–271.

  30. J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331, Oeuvres III, 1–73.

    Google Scholar 

  31. J.-P. Serre, Algèbre Locale, Multiplicités, 3rd ed., LNM 11, Springer (1975).

  32. J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42 Springer (1977).

  33. R. Swan, Algebraic K-theory, LNM 76, Springer (1968).

  34. L. N. Vaserstein, On stabilization for general linear groups over a ring, Math. USSR Sbornik 8 (1969), 383–400.

    Google Scholar 

  35. L. N. Vaserstein, On the Whitehead Determinant for Semi-local Rings, J. Algebra 283 (2005), 690–699.

    Google Scholar 

  36. O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. 4 (2002), 271–311.

    Google Scholar 

  37. O. Venjakob (with an appendix by D. Vogel), A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math. 559 (2003), 153–191.

    Google Scholar 

  38. O. Venjakob, Characteristic elements in non-commutative Iwasawa theory, Habilitationschschrift, Heidelberg University (2003).

  39. O. Venjakob, Characteristic elements in non-commutative Iwasawa theory, to appear in J. Reine Angew. Math.

  40. R. I. Yager, On two variable p-adic L-functions, Ann. Math. 115 (1982), 411–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha or Otmar Venjakob.

About this article

Cite this article

Coates, J., Fukaya, T., Kato, K. et al. The GL2 Main Conjecture for Elliptic Curves without Complex Multiplication. Publ.math.IHES 101, 163–208 (2005). https://doi.org/10.1007/s10240-004-0029-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-004-0029-3

Keywords

Navigation