Skip to main content
Log in

Basilar Membrane and Tectorial Membrane Stiffness in the CBA/CaJ Mouse

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The mouse has become an important animal model in understanding cochlear function. Structures, such as the tectorial membrane or hair cells, have been changed by gene manipulation, and the resulting effect on cochlear function has been studied. To contrast those findings, physical properties of the basilar membrane (BM) and tectorial membrane (TM) in mice without gene mutation are of great importance. Using the hemicochlea of CBA/CaJ mice, we have demonstrated that tectorial membrane (TM) and basilar membrane (BM) revealed a stiffness gradient along the cochlea. While a simple spring mass resonator predicts the change in the characteristic frequency of the BM, the spring mass model does not predict the frequency change along the TM. Plateau stiffness values of the TM were 0.6 ± 0.5, 0.2 ± 0.1, and 0.09 ± 0.09 N/m for the basal, middle, and upper turns, respectively. The BM plateau stiffness values were 3.7 ± 2.2, 1.2 ± 1.2, and 0.5 ± 0.5 N/m for the basal, middle, and upper turns, respectively. Estimations of the TM Young’s modulus (in kPa) revealed 24.3 ± 25.2 for the basal turns, 5.1 ± 4.5 for the middle turns, and 1.9 ± 1.6 for the apical turns. Young’s modulus determined at the BM pectinate zone was 76.8 ± 72, 23.9 ± 30.6, and 9.4 ± 6.2 kPa for the basal, middle, and apical turns, respectively. The reported stiffness values of the CBA/CaJ mouse TM and BM provide basic data for the physical properties of its organ of Corti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  • Abnet CC, Freeman DM (2000) Deformations of the isolated mouse tectorial membrane produced by oscillatory forces. Hear Res 144:29–46

    PubMed  CAS  Google Scholar 

  • Allaire P, Raynor S, Billione M (1974) Cochlear partition stiffness—a composite model. J Acoust Soc Am 55:1252–1258

    PubMed  CAS  Google Scholar 

  • Barral J, Martin P (2011) The physical basis of active mechanosensitivity by the hair-cell bundle. Curr Opin Otolaryngol Head Neck Surg 19:369–375

    PubMed  Google Scholar 

  • Brownell WE, Jacob S, Hakizimana P, Ulfendahl M, Fridberger A (2011) Membrane cholesterol modulates cochlear electromechanics. Pflugers Arch 461:677–686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheatham MA, Dallos P (2000) The dynamic range of inner hair cell and organ of Corti responses. J Acoust Soc Am 107:1508–1520

    PubMed  CAS  Google Scholar 

  • Chen F, Choudhury N, Zheng J, Matthews S, Nutall AL, Jacques SL (2007) In vivo imaging and low-coherence interferometry of organ of Corti vibration. J Biomed Opt 12:021006

    PubMed  Google Scholar 

  • Chen F, Zha D, Fridberger A, Zheng J, Choudhury N, Jacques SL, Wang RK, Shi X, Nuttall AL (2011) A differentially amplified motion in the ear for near-threshold sound detection. Nat Neurosci 14:770–774

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choudhury N, Song G, Chen F, Matthews S, Tschinkel T, Zheng J, Jacques SL, Nuttall AL (2006) Low coherence interferometry of the cochlear partition. Hear Res 220:1–9

    PubMed  Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585

    PubMed  CAS  Google Scholar 

  • Dallos P (2003) Organ of Corti kinematics. J Assoc Res Otolaryngol 4:416–421

    PubMed  PubMed Central  Google Scholar 

  • Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111

    PubMed  CAS  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dong W, Olson ES (2009) In vivo impedance of the gerbil cochlear partition at auditory frequencies. Biophys J 97:1233–1243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Echteler SM (1995) Structural correlates of frequency-place map development. Abstr Assoc Res Otolaryngol 18:442

    Google Scholar 

  • Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P (1998) Morphology of the unfixed cochlea. Hear Res 124:1–16

    PubMed  CAS  Google Scholar 

  • Eiber A (2008) Mechanical problems in human hearing. Stud Health Technol Inform 133:83–94

    PubMed  Google Scholar 

  • Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759–2771

    PubMed  Google Scholar 

  • Elliott SJ, Lineton B, Ni G (2011) Fluid coupling in a discrete model of cochlear mechanics. J Acoust Soc Am 130:1441–1451

    PubMed  Google Scholar 

  • Emadi G, Richter CP (2008) Developmental changes of mechanics measured in the gerbil cochlea. J Assoc Res Otolaryngol 9:22–32

    PubMed  PubMed Central  Google Scholar 

  • Emadi G, Richter C-P, Dallos P. Tectorial membrane stiffness at multiple longitudinal locations. Abstr Assoc Res Otolaryngol, 2002: 906.

  • Emadi G, Richter CP, Dallos P (2004) Stiffness of the gerbil basilar membrane: radial and longitudinal variations. J Neurophysiol 91:474–488

    PubMed  Google Scholar 

  • Eze N, Olson ES (2011) Basilar membrane velocity in a cochlea with a modified organ of Corti. Biophys J 100:858–867

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fettiplace R (2006) Active hair bundle movements in auditory hair cells. J Physiol 576:29–36

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fisher JA, Nin F, Reichenbach T, Uthaiah RC, Hudspeth AJ (2012) The spatial pattern of cochlear amplification. Neuron 76:989–997

    PubMed  CAS  PubMed Central  Google Scholar 

  • Freeman DM, Abnet CC, Hemmert W, Tsai BS, Weiss TF (2003a) Dynamic material properties of the tectorial membrane: a summary. Hear Res 180:1–10

    PubMed  Google Scholar 

  • Freeman DM, Masaki K, McAllister AR, Wei JL, Weiss TF (2003b) Static material properties of the tectorial membrane: a summary. Hear Res 180:11–27

    PubMed  Google Scholar 

  • Fridberger A, de Monvel JB (2003) Sound-induced differential motion within the hearing organ. Nat Neurosci 6:446–448

    PubMed  CAS  Google Scholar 

  • Fridberger A, Boutet De Monvel J, Ulfendahl M (2002a) Internal shearing within the hearing organ evoked by basilar membrane motion. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:9850–9857

    CAS  Google Scholar 

  • Fridberger A, Zheng J, Parthasarathi A, Ren T, Nuttall A (2002b) Loud sound-induced changes in cochlear mechanics. J Neurophysiol 88:2341–2348

    PubMed  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissue. Springer Verlag, New York

    Google Scholar 

  • Gao SS, Xia A, Yuan T, Raphael PD, Shelton RL, Applegate BE, Oghalai JS (2011) Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography. Opt Express 19:15415–15428

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gao SS, Raphael PD, Wang R, Park J, Xia A, Applegate BE, Oghalai JS (2013) In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography. Biomed Opt Express 4:230–240

    PubMed  PubMed Central  Google Scholar 

  • Gavara N, Chadwick RS (2009) Collagen-based mechanical anisotropy of the tectorial membrane: implications for inter-row coupling of outer hair cell bundles. PLoS One 4:e4877

    PubMed  PubMed Central  Google Scholar 

  • Gavara N, Chadwick RS (2010) Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy. Nat Methods 7:650–654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gavara N, Manoussaki D, Chadwick RS (2011) Auditory mechanics of the tectorial membrane and the cochlear spiral. Curr Opin Otolaryngol Head Neck Surg 19:382–387

    PubMed  PubMed Central  Google Scholar 

  • Ghaffari R, Aranyosi AJ, Freeman DM (2007) Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc Natl Acad Sci U S A 104(42):16510–16515

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gu JW, Hemmert W, Freeman DM, Aranyosi AJ (2008) Frequency-dependent shear impedance of the tectorial membrane. Biophys J 95:2529–2538

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gueta R, Barlam D, Shneck RZ, Rousso I (2006) Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy. Proc Natl Acad Sci U S A 103:14790–14795

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gueta R, Barlam D, Shneck RZ, Rousso I (2008) Sound-evoked deflections of outer hair cell stereo cilia arise from tectorial membrane anisotropy. Biophys J 94:4570–4576

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gueta R, Levitt J, Xia A, Katz O, Oghalai JS, Rousso I (2011) Structural and mechanical analysis of tectorial membrane Tecta mutants. Biophys J 100:2530–2538

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gummer AW, Johnstone BM, Armstrong NJ (1981) Direct measurement of basilar membrane stiffness in the guinea pig. J Acoust Soc Am 70:1298–1309

    Google Scholar 

  • He W, Fridberger A, Porsov E, Grosh K, Ren T (2008) Reverse wave propagation in the cochlea. Proc Natl Acad Sci U S A 105:2729–2733

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hemila S, Nummela S, Reuter T (2010) Anatomy and physics of the exceptional sensitivity of dolphin hearing (Odontoceti: Cetacea). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:165–179

    PubMed  Google Scholar 

  • Hong SS, Freeman DM (2006) Doppler optical coherence microscopy for studies of cochlear mechanics. J Biomed Opt 11:054014

    PubMed  Google Scholar 

  • Hu X, Evans BN, Dallos P. Transmission of basilar membrane motion to reticular lamina motion. . Abtsr. Assoc. Res. Otolaryngol., 1995: 223.

  • Hu X, Evans BN, Dallos P (1999) Direct visualization of organ of Corti kinematics in a hemi cochlea. J Neurophysiol 82:2798–2807

    PubMed  CAS  Google Scholar 

  • Iurato S (1962) Functional implication of the nature and submicroscopic structure of the tectorial and basilar membranes. J Acoust Soc Am 34:1386–1395

    Google Scholar 

  • Jacob S, Johansson C, Ulfendahl M, Fridberger A (2009) A digital heterodyne laser interferometer for studying cochlear mechanics. J Neurosci Methods 179:271–277

    PubMed  Google Scholar 

  • Jacob S, Pienkowski M, Fridberger A (2011) The endocochlear potential alters cochlear micromechanics. Biophys J 100:2586–2594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jia S, Dallos P, He DZ (2007) Mechanoelectric transduction of adult inner hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:1006–1014

    CAS  Google Scholar 

  • Jones GP, Lukashkina VA, Russell IJ, Elliott SJ, Lukashkin AN (2013) Frequency-dependent properties of the tectorial membrane facilitate energy transmission and amplification in the cochlea. Biophys J 104:1357–1366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kapadia S, Lutman ME (2000) Nonlinear temporal interactions in click-evoked otoacoustic emissions. II Experimental data Hear Res 146:101–120

    CAS  Google Scholar 

  • Karavitaki KD, Mountain DC (2007a) Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of Corti. Biophys J 92:3284–3293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karavitaki KD, Mountain DC (2007b) Imaging electrically evoked micromechanical motion within the organ of Corti of the excised gerbil cochlea. Biophys J 92:3294–3316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karavitaki KD, Mountain DC, Cody AR. Electrically evoked micromechanical movements from the apical turn of the gerbil cochlea. In Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E, editors. Diversity in auditory mechanics. World Scientific: Singapore//New Jersy//London//Hong Kong, 1996: 392–7.

  • Keiler S, Richter CP (2001) Cochlear dimensions obtained in hemi cochleae of four different strains of mice: CBA/CaJ, 129/CD1, 129/SvEv and C57BL/6 J. Hear Res 162:91–104

    PubMed  CAS  Google Scholar 

  • Kitani R, Kakehata S, Kalinec F (2011) Motile responses of cochlear outer hair cells stimulated with an alternating electrical field. Hear Res 280:209–218

    PubMed  PubMed Central  Google Scholar 

  • Kolston PJ (2000) The importance of phase data and model dimensionality to cochlear mechanics. Hear Res 145:25–36

    PubMed  CAS  Google Scholar 

  • Kössl M, Vater M (1996) A tectorial membrane fovea in the cochlea of the mustached bat. Die Naturwissenschaften 83:89–91

    PubMed  Google Scholar 

  • Lamb JS, Chadwick RS (2011) Dual traveling waves in an inner ear model with two degrees of freedom. Phys Rev Lett 107:088101

    PubMed  PubMed Central  Google Scholar 

  • Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, Richardson GP (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285

    PubMed  CAS  Google Scholar 

  • Mammano F, Ashmore JF (1993) Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365:838–841

    PubMed  CAS  Google Scholar 

  • Masaki K, Weiss TF, Freeman DM (2006) Poroelastic bulk properties of the tectorial membrane measured with osmotic stress. Biophys J 91:2356–2370

    PubMed  CAS  PubMed Central  Google Scholar 

  • Masaki K, Gu JW, Ghaffari R, Chan G, Smith RJ, Freeman DM, Aranyosi AJ (2009) Col11a2 deletion reveals the molecular basis for tectorial membrane mechanical anisotropy. Biophys J 96:4717–4724

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. J Acoust Soc Am 127:1411–1421

    PubMed  PubMed Central  Google Scholar 

  • Meaud J, Grosh K (2011) Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model. Biophys J 100:2576–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller CE (1985) Structural implications of basilar membrane compliance measurements. J Acoust Soc Am 77:1465–1474

    PubMed  CAS  Google Scholar 

  • Morioka I, Reuter G, Reiss P, Gummer AW, Hemmert W, Zenner HP (1995) Sound-induced displacement responses in the plane of the organ of Corti in the isolated guinea-pig cochlea. Hear Res 83:142–150

    PubMed  CAS  Google Scholar 

  • Müller M, Smolders JW (2005) Shift in the cochlear place-frequency map after noise damage in the mouse. Neuroreport 16:1183–1187

    PubMed  Google Scholar 

  • Müller M, von Hunerbein K, Hoidis S, Smolders JW (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    PubMed  Google Scholar 

  • Naidu RC, Mountain DC (1998) Measurements of the stiffness map challenge a basic tenet of cochlear theories. Hear Res 124:124–131

    PubMed  CAS  Google Scholar 

  • Naidu RC, Mountain DC (2001) Longitudinal coupling in the basilar membrane. J Assoc Res Otolaryngol 2:257–267

    PubMed  CAS  PubMed Central  Google Scholar 

  • Naidu RC, Mountain DC (2007) Basilar membrane tension calculations for the gerbil cochlea. J Acoust Soc Am 121:994–1002

    PubMed  Google Scholar 

  • Nakamura K, Yuge K (1982) Studies on fibrous tissues of the basilar membrane in inner ear. Auris Nasus Larynx 9:133–143

    PubMed  CAS  Google Scholar 

  • Nam JH, Fettiplace R (2010) Force transmission in the organ of Corti micromachine. Biophys J 98:2813–2821

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nam JH, Fettiplace R (2012) Optimal electrical properties of outer hair cells ensure cochlear amplification. PLoS One 7:e50572

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nowotny M, Gummer AW (2006) Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci U S A 103:2120–2125

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olson ES, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. J Acoust Soc Am 89:1262–1275

    PubMed  CAS  Google Scholar 

  • Olson ES, Mountain DC (1994) Mapping the cochlear partition’s stiffness to its cellular architecture. J Acoust Soc Am 95:395–400

    PubMed  CAS  Google Scholar 

  • Olson ES, Duifhuis H, Steele CR (2012) Von Bekesy and cochlear mechanics. Hear Res 293:31–43

    PubMed  PubMed Central  Google Scholar 

  • Ren T, Nuttall AL (2000) Fine structure and multicomponents of the electrically evoked otoacoustic emission in gerbil. Hear Res 143:58–68

    PubMed  CAS  Google Scholar 

  • Reuter G, Gitter AH, Thurm U, Zenner HP (1992) High frequency radial movements of the reticular lamina induced by outer hair cell motility. Hear Res 60:236–246

    PubMed  CAS  Google Scholar 

  • Rhode WS (2007) Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2792–2804

    PubMed  Google Scholar 

  • Richter CP, Edge R, He DZ, Dallos P (2000) Development of the gerbil inner ear observed in the hemi cochlea. J Assoc Res Otolaryngol 1:195–210

    PubMed  CAS  PubMed Central  Google Scholar 

  • Richter C-P, Dallos P. Multiple modes of vibration detected in the gerbil hemi cochlea. In Breebaart DJ, Houstma AJM, Kohlrausch A, Prijs VF, Schoonhoven R, editors. Physiological and Psychophysical Bases of Audiory Function. Shaker Publishing: St. Maateslaan, 2001: 44–50.

  • Richter CP, Dallos P. Micromechanics in the gerbil hemi cochlea. In Gummer A, editor. Biophysics of the cochela from molecules to models. World Scientific: New Jersy, London, Singapore Hong Kong, 2002: 287.

  • Richter C-P, Dallos P. Micromechanics in the gerbil hemi cochlea. . In Gummer T, editor. Meeting on cochlear mechanics, Titisee (Germany), 2003.

  • Richter CP, Emadi G, Getnick G, Quesnel A, Dallos P. Tectorial membrane stiffness gradients. Biophys J, 2007.

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Pysiological Reviews 81:1305–1352

    CAS  Google Scholar 

  • Rossing TD, Fletcher NH (1995) Principles of vibration and sound. Springer, New York

    Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Santos-Sacchi J (2008) Cochlear mechanics: no shout but a twist in the absence of prestin. Curr Biol 18:R304–R306

    PubMed  CAS  Google Scholar 

  • Shoelson B, Dimitriadis EK, Cai H, Kachar B, Chadwick RS (2004) Evidence and implications of inhomogeneity in tectorial membrane elasticity. Biophys J 87:2768–2777

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steel KP, Brown SD (1996) Genetics of deafness. Curr Opin Neurobiol 6:520–525

    PubMed  CAS  Google Scholar 

  • Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Gen 27:143–149

    CAS  Google Scholar 

  • Strelioff D, Flock A (1984) Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hear Res 15:19–28

    PubMed  CAS  Google Scholar 

  • Teudt IU, Richter CP (2007) The hemi cochlea preparation of the guinea pig and other mammalian cochleae. J Neurosci Methods 162:187–197

    PubMed  Google Scholar 

  • Thalmann I (1993) Collagen of accessory structures of organ of Corti. Connect Tissue Res 29:191–201

    PubMed  CAS  Google Scholar 

  • Thalmann I, Thallinger G, Comegys TH, Thalmann R (1986) Collagen—the predominant protein of the tectorial membrane. ORL; journal for oto-rhino-laryngology and its related specialties 48:107–115

    PubMed  CAS  Google Scholar 

  • Van Dijk P, Mason MJ, Schoffelen RL, Narins PM, Meenderink SW (2011) Mechanics of the frog ear. Hear Res 273:46–58

    PubMed  PubMed Central  Google Scholar 

  • Vôldrich L (1978) Mechanical properties of the basilar membrane. Acta Otolaryngol 86:331–335

    PubMed  Google Scholar 

  • von Békésy G (1953) Description of some mechanical properties of the organ of Corti. J Acoust Soc Am 25:770–781

    Google Scholar 

  • von Békésy G (1960) Experiments in hearing. McGraw-Hill Book Company, New York

    Google Scholar 

  • von Tiedemann M, Fridberger A, Ulfendahl M, de Monvel JB (2010) Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns. J Biomed Opt 15:056012

    Google Scholar 

  • Wangemann P, Schacht J. Homeostatic mechanisms in the cochlea. Springer, 1996: 130–85.

  • Zha D, Chen F, Ramamoorthy S, Fridberger A, Choudhury N, Jacques SL, Wang RK, Nuttall AL (2012) In vivo outer hair cell length changes expose the active process in the cochlea. PLoS One 7:e32757

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang R, Qian F, Rajagopalan L, Pereira FA, Brownell WE, Anvari B (2007) Prestin modulates mechanics and electromechanical force of the plasma membrane. Biophys J 93:L07–L09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130:94–107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng J, Deo N, Zou Y, Grosh K, Nuttall AL (2007) Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of Corti. J Neurophysiol 97:994–1004

    PubMed  Google Scholar 

  • Zwislocki JJ, Cefaratti LK (1989) Tectorial membrane. II: stiffness measurements in vivo. Hear Res 42:211–227

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Chamberlain SC, Slepecky NB (1988) Tectorial membrane. I: static mechanical properties in vivo. Hear Res 33:207–222

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Hearing Research Foundation, the Hugh Knowles Center, the National Science Foundation (IBN-077476 and IBN-0415901), and the NIH (DC00089-44 to MAC). The authors thank Dr. Peter Dallos for providing equipment and support to accomplish the experiments and for feedback on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teudt, I.U., Richter, C.P. Basilar Membrane and Tectorial Membrane Stiffness in the CBA/CaJ Mouse. JARO 15, 675–694 (2014). https://doi.org/10.1007/s10162-014-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0463-y

Keywords

Navigation