Skip to main content
Log in

A parametric simplex algorithm for linear vector optimization problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (the Evans–Steuer) algorithm (Math Program 5(1):54–72, 1973). Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Löhne (Vector optimization with infimum and supremum. Springer, Berlin, 2011), that is, it finds a subset of efficient solutions that allows to generate the whole efficient frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczyński and Vanderbei (Econometrica 71(4):1287–1297, 2003). The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm [Benson’s algorithm in Hamel et al. (J Global Optim 59(4):811–836, 2014)], that also provides a solution in the sense of Löhne (2011), and with the Evans–Steuer algorithm (1973). The results show that for non-degenerate problems the proposed algorithm outperforms Benson’s algorithm and is on par with the Evans–Steuer algorithm. For highly degenerate problems Benson’s algorithm (Hamel et al. 2014) outperforms the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than the Evans–Steuer algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armand, P.: Finding all maximal efficient faces in multiobjective linear programming. Math. Program. 61, 357–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armand, P., Malivert, C.: Determination of the efficient set in multiobjective linear programming. J. Optim. Theory Appl. 70, 467–489 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bencomo, M., Gutierrez, L., Ceberio, M.: Modified Fourier-Motzkin elimination algorithm for reducing systems of linear inequalities with unconstrained parameters. Departmental Technical Reports (CS) 593, University of Texas at El Paso (2011)

  5. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13, 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csirmaz, L.: Using multiobjective optimization to map the entropy region. Comput. Optim. Appl. 63(1), 45–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dauer, J.P.: Analysis of the objective space in multiple objective linear programming. J. Math. Anal. Appl. 126(2), 579–593 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dauer, J.P., Liu, Y.H.: Solving multiple objective linear programs in objective space. Eur. J. Oper. Res. 46(3), 350–357 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ecker, J.G., Hegner, N.S., Kouada, I.A.: Generating all maximal efficient faces for multiple objective linear programs. J. Optim. Theory Appl. 30, 353–381 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ecker, J.G., Kouada, I.A.: Finding all efficient extreme points for multiple objective linear programs. Math. Program. 14(12), 249–261 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  12. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s outer approximation algorithm. J. Global Optim. 52(4), 757–778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrgott, M., Puerto, J., Rodriguez-Chía, A.M.: Primal-dual simplex method for multiobjective linear programming. J. Optim. Theory Appl. 134, 483–497 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehrgott, M., Shao, L., Schöbel, A.: An approximation algorithm for convex multi-objective programming problems. J. Global Optim. 50(3), 397–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, J.P., Steuer, R.E.: A revised simplex method for multiple objective programs. Math. Program. 5(1), 54–72 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamel, A.H., Löhne, A., Rudloff, B.: Benson type algorithms for linear vector optimization and applications. J. Global Optim. 59(4), 811–836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Isermann, H.: The enumeration of the set of all efficient solutions for a linear multiple objective program. Oper. Res. Q. 28(3), 711–725 (1977)

    Article  MATH  Google Scholar 

  18. Kalyanasundaram, B., Pruhs, K.R.: Constructing competetive tours from local information. Theor. Comput. Sci. 130, 125–138 (1994)

    Article  MATH  Google Scholar 

  19. Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  20. Löhne, A.: BENSOLVE: A free VLP solver, version 1.2. (2012). http://ito.mathematik.uni-halle.de/~loehne

  21. Löhne, A., Rudloff, B., Ulus, F.: Primal and dual approximation algorithms for convex vector optimization problems. J. Global Optim. 60(4), 713–736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Löhne, A., Weißing, B.: BENSOLVE: A free VLP solver, version 2.0.1 (2015). http://bensolve.org/

  23. Löhne, A., Weißing, B.: The vector linear program solver bensolve: notes on theoretical background. Eur. J. Oper. Res. (2016). doi:10.1016/j.ejor.2016.02.039

    MATH  Google Scholar 

  24. Luc, D.: Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  25. Makhorin, A.: GLPK (GNU linear programming kit) (2012). https://www.gnu.org/software/glpk/

  26. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22, 371–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ruszczyński, A., Vanderbei, R.J.: Frontiers of stochastically nondominated portfolios. Econometrica 71(4), 1287–1297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schechter, M., Steuer, R.E.: A correction to the connectedness of the Evans–Steuer algorithm of multiple objective linear programming. Found. Comput. Decis. Sci. 30(4), 351–359 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Shao, L., Ehrgott, M.: Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68(2), 257–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shao, L., Ehrgott, M.: Approximating the nondominated set of an MOLP by approximately solving its dual problem. Math. Methods Oper. Res. 68(3), 469–492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Steuer, R.E.: A Multiple Objective Linear Programming Solver for All Efficient Extreme Points and All Unbounded Efficient Edges. Terry College of Business, University of Georgia, Athens (2004)

    Google Scholar 

  32. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, Dordrecht (2013)

    MATH  Google Scholar 

  33. Zionts, S., Wallenius, J.: Identifying efficient vectors: some theory and computational results. Oper. Res. 28(3), 786–793 (1980)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Andreas Löhne, Friedrich-Schiller-Universität Jena, for helpful remarks that greatly improved the manuscript, and Ralph E. Steuer, University of Georgia, for providing us the ADBASE implementation of the algorithm from [15]. Vanderbei’s research was supported by the Office of Naval Research under Award Number N000141310093 and N000141612162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdevs Ulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudloff, B., Ulus, F. & Vanderbei, R. A parametric simplex algorithm for linear vector optimization problems. Math. Program. 163, 213–242 (2017). https://doi.org/10.1007/s10107-016-1061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1061-z

Keywords

Mathematics Subject Classification

Navigation