Skip to main content

Advertisement

Log in

Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type 1 Rev (regulator of the expression of the virion) protein was shown to reduce the expression level of the co-transfected luciferase reporter gene (luc+) introduced to monitor transfection efficiency. We studied the mechanism of the inhibitory Rev effect. The effect, caused by nuclear retention of luc+ mRNA, was reversed if rev had a point mutation that makes its nuclear export signal (NES) unable to associate with cellular transport factors. The Rev NES receptor CRM1 (chromosome region maintenance 1)-specific inhibitor, leptomycin B, blocked luc+ mRNA export. This finding was also supported by the overexpression of ΔCAN, another specific CRM1 inhibitor that caused inhibition of luciferase gene expression. Experiments involving tsBN2 cells, which have a temperature-sensitive RCC1 (regulator of chromosome condensation 1) allele, demonstrated that luc+ expression required generation of the GTP-bound form of RanGTPase (RanGTP) by RCC1. The constitutive transport element (CTE)-mediated nuclear export of luc+ mRNA was found to also depend upon RanGTP. Nuclear export of luc+ mRNA is thus suggested to involve CRM1 and RanGTP, which Rev employs to transport viral mRNA. The Rev effect is therefore considered to involve competition between two molecules for common transport factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bond VC, Huang MB, Person B, Hairston R, Ye XY, Saltarelli M (1997) Effects of the human immunodeficiency virus type 1 Rev protein on reporter gene and host T-cell gene expression. Cell Mol Biol (Noisy-Le-Grand) 43:995–1005

    CAS  Google Scholar 

  2. Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5:289–307

    Article  PubMed  CAS  Google Scholar 

  3. Custodio N, Carmo-Fonseca M, Geraghty F, Pereira HS, Grosveld F, Antoniou M (1999) Inefficient processing impairs release of RNA from the site of transcription. EMBO J 18:2855–2866

    Article  PubMed  CAS  Google Scholar 

  4. Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773

    Article  PubMed  Google Scholar 

  5. Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96:639–655

    Article  PubMed  CAS  Google Scholar 

  6. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  PubMed  CAS  Google Scholar 

  7. Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050

    Article  PubMed  CAS  Google Scholar 

  8. Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–6547

    Article  PubMed  CAS  Google Scholar 

  9. Malim MH, Bohnlein S, Hauber J, Cullen BR (1989) Functional dissection of the HIV-1 Rev trans-activator: derivation of a trans-dominant repressor of Rev function. Cell 58:205–214

    Article  PubMed  CAS  Google Scholar 

  10. Mann DA, Mikaelian I, Zemmel RW, Green SM, Lowe AD, Kimura T, Singh M, Butler PJ, Gait MJ, Karn J (1994) A molecular rheostat. Co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression. J Mol Biol 241:193–207

    Article  PubMed  CAS  Google Scholar 

  11. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483

    Article  PubMed  CAS  Google Scholar 

  12. Ho JH, Kallstrom G, Johnson AW (2000) Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol 151:1057–1066

    Article  PubMed  CAS  Google Scholar 

  13. Moy TI, Silver PA (2002) Requirements for the nuclear export of the small ribosomal subunit. J Cell Sci 115:2985–2995

    PubMed  CAS  Google Scholar 

  14. Herold A, Teixeira L, Izaurralde E (2003) Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J 22:2472–2483

    Article  PubMed  CAS  Google Scholar 

  15. Brennan CM, Gallouzi IE, Steitz JA (2000) Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 151:1–14

    Article  PubMed  CAS  Google Scholar 

  16. Jang BC, Munoz-Najar U, Paik JH, Claffey K, Yoshida M, Hla T (2003) Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem 278:2773–2776

    Article  PubMed  CAS  Google Scholar 

  17. Higashino F, Aoyagi M, Takahashi A, Ishino M, Taoka M, Isobe T, Kobayashi M, Totsuka Y, Kohgo T, Shindoh M (2005) Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism. J Cell Biol 170:15–20

    Article  PubMed  CAS  Google Scholar 

  18. Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M, Horinouchi S (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A 96:9112–9117

    Article  PubMed  CAS  Google Scholar 

  19. Kimura T, Hashimoto I, Nagase T, Fujisawa J (2004) CRM1-dependent, but not ARE-mediated, nuclear export of IFN-alpha1 mRNA. J Cell Sci 117:2259–2270

    Article  PubMed  CAS  Google Scholar 

  20. de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    PubMed  Google Scholar 

  21. van Ooyen A, van den Berg J, Mantei N, Weissmann C (1979) Comparison of total sequence of a cloned rabbit beta-globin gene and its flanking regions with a homologous mouse sequence. Science 206:337–344

    Article  PubMed  Google Scholar 

  22. Tang H, Gaietta GM, Fischer WH, Ellisman MH, Wong-Staal F (1997) A cellular cofactor for the constitutive transport element of type D retrovirus. Science 276:1412–1415

    Article  PubMed  CAS  Google Scholar 

  23. Bogerd HP, Echarri A, Ross TM, Cullen BR (1998) Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crm1. J Virol 72:8627–8635

    PubMed  CAS  Google Scholar 

  24. Kimura T, Hashimoto I, Nishikawa M, Fujisawa JI (1996) A role for Rev in the association of HIV-1 gag mRNA with cytoskeletal beta-actin and viral protein expression. Biochimie (Paris) 78: 1075–1080

    CAS  Google Scholar 

  25. Kimura T, Ohyama A (1994) Interaction with the Rev response element along an extended stem I duplex structure is required to complete human immunodeficiency virus type 1 rev-mediated trans-activation in vivo. J Biochem 115:945–952

    PubMed  CAS  Google Scholar 

  26. Kimura T, Hashimoto I (2004) Functional links between the steps in mRNA biogenesis and nuclear export. In: Pandalai SG (ed) Recent research developments in molecular and cellular biology. Research Signpost, Kerala, pp 197–208

    Google Scholar 

  27. Saavedra CA, Hammell CM, Heath CV, Cole CN (1997) Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev 11:2845–2856

    Article  PubMed  CAS  Google Scholar 

  28. Kimura T, Hashimoto I, Nishikawa M (2003) HIV-1 Rev protein: an RNA adapter between the cis-acting viral target site and the cellular CRM1/XPO1 nuclear export factor. In: Pandalai SG (ed) Recent research developments in biochemistry. Research Signpost, Kerala, pp 519–548

    Google Scholar 

  29. Wolff B, Sanglier JJ, Wang Y (1997) Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 4:139–147

    Article  PubMed  CAS  Google Scholar 

  30. Otero GC, Harris ME, Donello JE, Hope TJ (1998) Leptomycin B inhibits equine infectious anemia virus Rev and feline immunodeficiency virus rev function but not the function of the hepatitis B virus posttranscriptional regulatory element. J Virol 72: 7593–7597

    PubMed  CAS  Google Scholar 

  31. Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16:807–816

    Article  PubMed  CAS  Google Scholar 

  32. Nishimoto T, Eilen E, Basilico C (1978) Premature of chromosome condensation in a ts DNA- mutant of BHK cells. Cell 15:475–483

    Article  PubMed  CAS  Google Scholar 

  33. Kadowaki T, Goldfarb D, Spitz LM, Tartakoff AM, Ohno M (1993) Regulation of RNA processing and transport by a nuclear guanine nucleotide release protein and members of the Ras superfamily. EMBO J 12:2929–2937

    PubMed  CAS  Google Scholar 

  34. Nishitani H, Ohtsubo M, Yamashita K, Iida H, Pines J, Yasudo H, Shibata Y, Hunter T, Nishimoto T (1991) Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO J 10:1555–1564

    PubMed  CAS  Google Scholar 

  35. Richards SA, Carey KL, Macara IG (1997) Requirement of guanosine triphosphate-bound ran for signal-mediated nuclear protein export. Science 276:1842–1844

    Article  PubMed  CAS  Google Scholar 

  36. Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  CAS  Google Scholar 

  37. Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547

    Article  PubMed  CAS  Google Scholar 

  38. Zolotukhin AS, Felber BK (1999) Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J Virol 73:120–127

    PubMed  CAS  Google Scholar 

  39. Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1:649–659

    Article  PubMed  CAS  Google Scholar 

  40. Saavedra C, Felber B, Izaurralde E (1997) The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export. Curr Biol 7:619–628

    Article  PubMed  CAS  Google Scholar 

  41. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  PubMed  CAS  Google Scholar 

  42. Popa I, Harris ME, Donello JE, Hope TJ (2002) CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22:2057–2067

    Article  PubMed  CAS  Google Scholar 

  43. Otero GC, Hope TJ (1998) Splicing-independent expression of the herpes simplex virus type 1 thymidine kinase gene is mediated by three cis-acting RNA subelements. J Virol 72:9889–9896

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tominori Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Hashimoto, I., Nishikawa, M. et al. Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase. Med Mol Morphol 42, 70–81 (2009). https://doi.org/10.1007/s00795-009-0441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-009-0441-3

Key words

Navigation