Skip to main content

Advertisement

Log in

Osteogain® loaded onto an absorbable collagen sponge induces attachment and osteoblast differentiation of ST2 cells in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Dimensional changes of the alveolar bone following tooth extraction are a major challenge in daily dental practice. To limit bone loss, a variety of biomaterials including bone grafts, barrier membranes, and growth factors have been utilized either alone or in combination therapies to increase the speed and quality of new bone formation. The aim of the present in vitro study was to investigate the regenerative potential of Osteogain®, a new liquid carrier system of enamel matrix derivative (EMD) in combination with an absorbable collagen sponge (ACS) specifically designed for extraction socket healing.

Materials and methods

The potential of ACS was first investigated using ELISA to quantify total amelogenin adsorption and release from 0 to 10 days. Thereafter, the cellular effects of ST2 pre-osteoblasts were investigated for cellular attachment at 8 h and cell proliferation at 1, 3, and 5 days as well as osteoblast differentiation by real-time PCR and alizarin red staining for cells seeded on (1) tissue culture plastic, (2) ACS alone, and (3) ACS + Osteogain®.

Results

ACS efficiently loaded nearly 100% of the amelogenin proteins found in Osteogain® which were gradually released up to a 10-day period. Osteogain® also significantly induced a 1.5-fold increase in cell attachment and resulted in a 2–6-fold increase in mRNA levels of osteoblast differentiation markers including runt-related transcription factor 2 (Runx2), collagen1a2, alkaline phosphatase, and bone sialoprotein as well as induced alizarin red staining when combined with ACS.

Conclusions

In summary, these findings suggest that Osteogain® is capable of inducing osteoblast attachment and differentiation when combined with ACS. Future animal studies and randomized human clinical trials are necessary to further support these findings.

Clinical relevance

The use of Osteogain® in combination with ACS may provide a valuable means to limit dimensional changes following tooth extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Johnson K (1963) A study of the dimensional changes occurring in the maxilla after tooth extraction.—part I. Normal healing. Aust Dent J 8:428–433

    Article  Google Scholar 

  2. Araújo MG, Lindhe J (2005) Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 32:212–218

    Article  PubMed  Google Scholar 

  3. Chappuis V, Engel O, Reyes M, Shahim K, Nolte LP, Buser D (2013) Ridge alterations post-extraction in the esthetic zone: a 3D analysis with CBCT. J Dent Res 92:195s–201s. doi:10.1177/0022034513506713

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brkovic BM, Prasad HS, Konandreas G, Milan R, Antunovic D, Sandor GK, Rohrer MD (2008) Simple preservation of a maxillary extraction socket using beta-tricalcium phosphate with type I collagen: preliminary clinical and histomorphometric observations. J (Canadian Dental Association) 74:523–528

    Google Scholar 

  5. Brkovic BM, Prasad HS, Rohrer MD, Konandreas G, Agrogiannis G, Antunovic D, Sandor GK (2012) Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: clinical, histologic, histomorphometric, and immunohistochemical evaluation. Clin Oral Invest 16:581–590. doi:10.1007/s00784-011-0531-1

    Article  Google Scholar 

  6. Mardas N, Chadha V, Donos N (2010) Alveolar ridge preservation with guided bone regeneration and a synthetic bone substitute or a bovine-derived xenograft: a randomized, controlled clinical trial. Clin Oral Implants Res 21:688–698. doi:10.1111/j.1600-0501.2010.01918.x

    Article  PubMed  Google Scholar 

  7. Wallace S (2015) Histomorphometric and 3D cone-beam computerized tomographic evaluation of socket preservation in molar extraction sites using human particulate mineralized cancellous allograft bone with a porcine collagen xenograft barrier: a case series. J Oral Implantol 41:291–297. doi:10.1563/aaid-joi-D-14-00078

    Article  PubMed  Google Scholar 

  8. Bayat M, Momen Heravi F, Mahmoudi M, Bahrami N (2015) Bone reconstruction following application of bone matrix gelatin to alveolar defects: a randomized clinical trial. Int J Organ Transplant Med 6:176–181

    PubMed  PubMed Central  Google Scholar 

  9. Mardas N, D'Aiuto F, Mezzomo L, Arzoumanidi M, Donos N (2011) Radiographic alveolar bone changes following ridge preservation with two different biomaterials. Clin Oral Implants Res 22:416–423. doi:10.1111/j.1600-0501.2010.02154.x

    Article  PubMed  Google Scholar 

  10. Coomes AM, Mealey BL, Huynh-Ba G, Barboza-Arguello C, Moore WS, Cochran DL (2014) Buccal bone formation after flapless extraction: a randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone. J Periodontol 85:525–535. doi:10.1902/jop.2013.130207

    Article  PubMed  Google Scholar 

  11. Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, Toljanic J, Jones A, Nevins M (2005) Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol 76:605–613. doi:10.1902/jop.2005.76.4.605

    Article  PubMed  Google Scholar 

  12. Misch CM (2010) The use of recombinant human bone morphogenetic protein-2 for the repair of extraction socket defects: a technical modification and case series report. Int J Oral Maxillofac Implants 25:1246–1252

    PubMed  Google Scholar 

  13. Wallace SC, Pikos MA, Prasad H (2014) De novo bone regeneration in human extraction sites using recombinant human bone morphogenetic protein-2/ACS: a clinical, histomorphometric, densitometric, and 3-dimensional cone-beam computerized tomographic scan evaluation. Implant Dent 23:132–137. doi:10.1097/id.0000000000000035

    Article  PubMed  Google Scholar 

  14. De Risi V, Clementini M, Vittorini G, Mannocci A, De Sanctis M (2015) Alveolar ridge preservation techniques: a systematic review and meta-analysis of histological and histomorphometrical data. Clin Oral Implants Res 26:50–68. doi:10.1111/clr.12288

    Article  PubMed  Google Scholar 

  15. Jambhekar S, Kernen F, Bidra AS (2015) Clinical and histologic outcomes of socket grafting after flapless tooth extraction: a systematic review of randomized controlled clinical trials. J Prosthet Dent 113:371–382. doi:10.1016/j.prosdent.2014.12.009

    Article  PubMed  Google Scholar 

  16. Moraschini V, Barboza ED (2016) Quality assessment of systematic reviews on alveolar socket preservation. Int J Oral Maxillofac Surg. doi:10.1016/j.ijom.2016.03.010

    Google Scholar 

  17. Spagnoli D, Choi C (2013) Extraction socket grafting and buccal wall regeneration with recombinant human bone morphogenetic protein-2 and acellular collagen sponge. Atlas Oral Maxillofac Surg Clin North Am 21:175–183. doi:10.1016/j.cxom.2013.05.003

    Article  PubMed  Google Scholar 

  18. Morjaria KR, Wilson R, Palmer RM (2014) Bone healing after tooth extraction with or without an intervention: a systematic review of randomized controlled trials. Clin Implant Dent Relat Res 16:1–20. doi:10.1111/j.1708-8208.2012.00450.x

    Article  PubMed  Google Scholar 

  19. Tan WL, Wong TL, Wong MC, Lang NP (2012) A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res 23(Suppl 5):1–21. doi:10.1111/j.1600-0501.2011.02375.x

    Article  PubMed  Google Scholar 

  20. De Sarkar A, Singhvi N, Shetty JN, Ramakrishna T, Shetye O, Islam M, Keerthy H (2015) The local effect of alendronate with intra-alveolar collagen sponges on post extraction alveolar ridge resorption: a clinical trial. J Maxillofac Oral Surg 14:344–356. doi:10.1007/s12663-014-0633-9

    Article  PubMed  Google Scholar 

  21. Zhang Y, Yang S, Zhou W, Fu H, Qian L, Miron RJ (2015) Addition of a synthetically fabricated osteoinductive biphasic calcium phosphate bone graft to BMP2 improves new bone formation. Clin Implant Dent Relat Res. doi:10.1111/cid.12384

    Google Scholar 

  22. Miron RJ, Bosshardt DD, Buser D, Zhang Y, Tugulu S, Gemperli A, Dard M, Caluseru OM, Chandad F, Sculean A (2015) Comparison of the capacity of enamel matrix derivative gel and enamel matrix derivative in liquid formulation to adsorb to bone grafting materials. J Periodontol 86:578–587. doi:10.1902/jop.2015.140538

    Article  PubMed  Google Scholar 

  23. Miron RJ, Chandad F, Buser D, Sculean A, Cochran DL, Zhang Y (2016) Effect of enamel matrix derivative liquid on osteoblast and periodontal ligament cell proliferation and differentiation. J Periodontol 87:91–99. doi:10.1902/jop.2015.150389

    Article  PubMed  Google Scholar 

  24. Zhang Y, Jing D, Buser D, Sculean A, Chandad F, Miron RJ (2016) Bone grafting material in combination with Osteogain for bone repair: a rat histomorphometric study. Clin Oral Invest 20:589–595. doi:10.1007/s00784-015-1532-2

    Article  Google Scholar 

  25. Miron RJ, Sculean A, Cochran DL, Froum S, Zucchelli G, Nemcovsky C, Donos N, Lyngstadaas SP, Deschner J, Dard M, Stavropoulos A, Zhang Y, Trombelli L, Kasaj A, Shirakata Y, Cortellini P, Tonetti M, Rasperini G, Jepsen S, Bosshardt DD (2016) 20 years of enamel matrix derivative: the past, the present and the future. J Clin Periodontol. doi:10.1111/jcpe.12546

    PubMed  Google Scholar 

  26. Boyan BD, Weesner TC, Lohmann CH, Andreacchio D, Carnes DL, Dean DD, Cochran DL, Schwartz Z (2000) Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo. J Periodontol 71:1278–1286. doi:10.1902/jop.2000.71.8.1278

    Article  PubMed  Google Scholar 

  27. Kauvar AS, Thoma DS, Carnes DL, Cochran DL (2010) In vivo angiogenic activity of enamel matrix derivative. J Periodontol 81:1196–1201. doi:10.1902/jop.2010.090441

    Article  PubMed  Google Scholar 

  28. Neeley WW, Carnes DL, Cochran DL (2010) Osteogenesis in an in vitro coculture of human periodontal ligament fibroblasts and human microvascular endothelial cells. J Periodontol 81:139–149. doi:10.1902/jop.2009.090027

    Article  PubMed  Google Scholar 

  29. Schlueter SR, Carnes DL, Cochran DL (2007) In vitro effects of enamel matrix derivative on microvascular cells. J Periodontol 78:141–151. doi:10.1902/jop.2007.060111

    Article  PubMed  Google Scholar 

  30. Thoma DS, Villar CC, Carnes DL, Dard M, Chun YH, Cochran DL (2011) Angiogenic activity of an enamel matrix derivative (EMD) and EMD-derived proteins: an experimental study in mice. J Clin Periodontol 38:253–260. doi:10.1111/j.1600-051X.2010.01656.x

    Article  PubMed  Google Scholar 

  31. Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, Buser D (2011) Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res 90:1428–1433. doi:10.1177/0022034511422718

    Article  PubMed  Google Scholar 

  32. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  Google Scholar 

  33. Hoang AM, Klebe RJ, Steffensen B, Ryu OH, Simmer JP, Cochran DL (2002) Amelogenin is a cell adhesion protein. J Dent Res 81:497–500

    Article  PubMed  Google Scholar 

  34. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692. doi:10.1002/jbmr.5650070613

    Article  PubMed  Google Scholar 

  35. Miron RJ, Bosshardt DD, Hedbom E, Zhang Y, Haenni B, Buser D, Sculean A (2012) Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation. J Periodontol 83:936–947. doi:10.1902/jop.2011.110480

    Article  PubMed  Google Scholar 

  36. Miron RJ, Caluseru OM, Guillemette V, Zhang Y, Buser D, Chandad F, Sculean A (2015) Effect of bone graft density on in vitro cell behavior with enamel matrix derivative. Clin Oral Invest 19:1643–1651. doi:10.1007/s00784-014-1388-x

    Article  Google Scholar 

  37. Miron RJ, Fujioka-Kobayashi M, Zhang Y, Caballe-Serrano J, Shirakata Y, Bosshardt DD, Buser D, Sculean A (2016) Osteogain improves osteoblast adhesion, proliferation and differentiation on a bovine-derived natural bone mineral. Clin Oral Implants Res. doi:10.1111/clr.12802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Miron.

Ethics declarations

Conflict of interest

Osteogain® was kindly supplied by Straumann AG, Switzerland. ACS was provided by Botiss AG, Germany. The authors declare that they have no conflict of interests.

Funding

This work was fully funded by the Cell Biology Laboratory at Nova Southeastern University, College of Dental Medicine.

Ethical approval

No ethical approval was required for this study as human participants or animals were not utilized in this study.

Informed consent

For this type of study, informed consent was not required as no human or animal subjects were utilized.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miron, R.J., Fujioka-Kobayashi, M., Zhang, Y. et al. Osteogain® loaded onto an absorbable collagen sponge induces attachment and osteoblast differentiation of ST2 cells in vitro. Clin Oral Invest 21, 2265–2272 (2017). https://doi.org/10.1007/s00784-016-2019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-2019-5

Keywords

Navigation