Skip to main content
Log in

Antikörpertherapie in klinischer und präklinischer Anwendung bei gastrointestinalen Karzinomen

Antibody therapy in the clinical and preclinical treatment of gastrointestinal cancer

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Derzeit befinden sich viele neue Substanzen zur Therapie gastrointestinaler Karzinome in klinischer und präklinischer Anwendung. Die Apoptose von malignen Zellen als natürliche Form der Zellzerstörung stellt ein ideales Ziel in der Krebstherapie dar. Die tatsächliche Effektivität und das Nebenwirkungsspektrum bisheriger Antikörper sind gegenwärtig von einer überzeugenden klinischen Anwendung zu weit entfernt. Verschiedene Substanzklassen von Antikörpern geben aber Hoffnung, dass in naher Zukunft die Verträglichkeit durch veränderte Herstellung (Humanisierung, Chimärisation oder komplett humane Antikörper) und die Wirkung durch höhere Selektivität substanziell verbessert werden.

Durch den Einsatz neuer Zytostatika und die Entwicklung zielgerichteter Antikörper gegen EGFR und VEGF konnte das mediane Überleben bei Patienten mit gastrointestinalen Karzinomen in den letzten Jahren deutlich verlängert werden. Insbesondere das Überleben von Patienten mit fortgeschrittenen kolorektalen Karzinomen konnte auf aktuell über 2 Jahre verlängert und damit im Vergleich zur 5-FU-Ära fast verdoppelt werden. Die vielfältigen Kombinationstherapien mit Chemotherapeutika und monoklonalen Antikörpern machen die Behandlung von Patienten mit gastrointestinalen Karzinomen zwar deutlich komplexer als früher, bieten aber gerade Patienten mit Metastasen wesentlich effektivere Therapieansätze. Bevacizumab und Cetuximab als Paradebeispiele der „targeted therapy“ haben innerhalb klinischer Studien in der Erst- und Zweitlinientherapie des metastasierten kolorektalen Karzinoms berechtigterweise Einzug gehalten.

Abstract

The clinical and preclinical applications of new antitumor agents for the treatment of gastrointestinal cancer is a field undergoing continuous progress. The antibody derived apoptosis of tumor cells represents an ideal target in cancer therapy. However, the actual effectiveness of and tolerance to antibodies does not yet allow for a convincing clinical application. Modifications in the production of antibodies, such as humanisation, chimerisation or the establishment of totally human antibodies, provide hope for higher selectivity and less side effects in the future.

Through the development of targeted therapy with antibodies against epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), as well as the combination with new cytotoxic agents, the median overall survival in colorectal cancer patients has been significantly improved over the next few years. In particular, the survival of patients with advanced colorectal cancer could be increased by more than 2 years, almost doubling that found with the classical 5-FU regimen. Thus, the use of chemotherapy and antibodies in the treatment of gastrointestinal cancer means that this has become not only more effective, particularly for patients with metastases, but also much more complex. Bevacizumab and cetuximab are excellent examples for a selectively targeted therapy in first and second-line therapy for metastatic colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Akbulut H, Altuntas F, Akbulut KG et al. (2002) Prognostic role of serum vascular endothelial growth factor, basic fibroblast growth factor and nitric oxide in patients with colorectal carcinoma. Cytokine 20: 184–190

    Article  PubMed  Google Scholar 

  2. Arteaga CL (2002) Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Semin Oncol 29: 3–9

    Article  Google Scholar 

  3. Baselga J (2001) The EGFR as a target for anticancer therapy--focus on cetuximab. Eur J Cancer (Suppl 4) 37: S16–S22

    Google Scholar 

  4. Becker JC, Muller-Tidow C, Serve H et al. (2006) Role of receptor tyrosine kinases in gastric cancer: new targets for a selective therapy. World J Gastroenterol 12: 3297–3305

    PubMed  Google Scholar 

  5. Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37: 1141–1149

    Article  PubMed  Google Scholar 

  6. Bohn J (1999) Are natural antibodies involved in tumour defence? Immunol Lett 69: 317–320

    Article  PubMed  Google Scholar 

  7. Brandlein S, Beyer I, Eck M et al. (2003) Cysteine-rich fibroblast growth factor receptor 1, a new marker for precancerous epithelial lesions defined by the human monoclonal antibody PAM-1. Cancer Res 63: 2052–2061

    PubMed  Google Scholar 

  8. Brandlein S, Pohle T, Ruoff N et al. (2003) Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res 63: 7995–8005

    PubMed  Google Scholar 

  9. Brandlein S, Pohle T, Vollmers C et al. (2004) CFR-1 receptor as target for tumor-specific apoptosis induced by the natural human monoclonal antibody PAM-1. Oncol Rep 11: 777–784

    PubMed  Google Scholar 

  10. Brandlein S, Vollmers HP (2004) Natural IgM antibodies, the ignored weapons in tumour immunity. Histol Histopathol 19: 897–905

    PubMed  Google Scholar 

  11. Breedveld FC (2000) Therapeutic monoclonal antibodies. Lancet 355: 735–740

    Article  PubMed  Google Scholar 

  12. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6: 343–357

    Article  PubMed  Google Scholar 

  13. Chaudhary VK, FitzGerald DJ, Adhya S, Pastan I (1987) Activity of a recombinant fusion protein between transforming growth factor type alpha and Pseudomonas toxin. Proc Natl Acad Sci USA 84: 4538–4542

    Article  PubMed  Google Scholar 

  14. Ciardiello F, Caputo R, Troiani T et al. (2001) Antisense oligonucleotides targeting the epidermal growth factor receptor inhibit proliferation, induce apoptosis, and cooperate with cytotoxic drugs in human cancer cell lines. Int J Cancer 93: 172–178

    Article  PubMed  Google Scholar 

  15. Cohen BD, Baker DA, Soderstrom C et al. (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11: 2063–2073

    Article  PubMed  Google Scholar 

  16. Cunningham D, Allum WH, Stenning SP et al. (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355: 11–20

    Article  PubMed  Google Scholar 

  17. Cunningham D, Humblet Y, Siena S et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: 337–345

    Article  PubMed  Google Scholar 

  18. Gramont A de, Bosset JF, Milan C et al. (1997) Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol 15: 808–815

    PubMed  Google Scholar 

  19. Egea G, Franci C, Gambus G et al. (1993) cis-Golgi resident proteins and O-glycans are abnormally compartmentalized in the RER of colon cancer cells. J Cell Sci 105: 819–830

    PubMed  Google Scholar 

  20. Ellerbroek SM, Halbleib JM, Benavidez M et al. (2001) Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Res 61: 1855–1861

    PubMed  Google Scholar 

  21. Fan Z, Lu Y, Wu X, Mendelsohn J (1994) Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 269: 27595–27602

    PubMed  Google Scholar 

  22. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9: 669–676

    Article  PubMed  Google Scholar 

  23. Figlin RA BACJ (2002) ABX-EGF, a fully human anti-epidermal growth factor receptor (EGFR) monoclonal antibody in patients with advanced cancer: phase I clinical results. Proc Am Soc Clin Oncol 35: A37

    Google Scholar 

  24. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31

    PubMed  Google Scholar 

  25. Folprecht G (2004) Cetuximab/Irinotecan/high-dose-5-fluorouracil/leucovorin in the first-line therapy of metastatic colorectal cancer. Gastrointestinal Cancers Symposium: A283

    Google Scholar 

  26. Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18: 245–273

    Article  PubMed  Google Scholar 

  27. Garcia I, Vizoso F, Martin A et al. (2003) Clinical significance of the epidermal growth factor receptor and HER2 receptor in resectable gastric cancer. Ann Surg Oncol 10: 234–241

    Article  PubMed  Google Scholar 

  28. Gibson MK, Abraham SC, Wu TT et al. (2003) Epidermal growth factor receptor, p53 mutation, and pathological response predict survival in patients with locally advanced esophageal cancer treated with preoperative chemoradiotherapy. Clin Cancer Res 9: 6461–6468

    PubMed  Google Scholar 

  29. Gibson TB, Ranganathan A, Grothey A (2006) Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer. Clin Colorectal Cancer 6: 29–31

    PubMed  Google Scholar 

  30. Glennie MJ, Johnson PW (2000) Clinical trials of antibody therapy. Immunol Today 21: 403–410

    Article  PubMed  Google Scholar 

  31. Gordon MS, Cunningham D (2005) Managing patients treated with bevacizumab combination therapy. Oncology 69 (Suppl 3): S25–S33

    Article  Google Scholar 

  32. Gordon MS, Margolin K, Talpaz M et al. (2001) Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19: 843–850

    PubMed  Google Scholar 

  33. Gross ME, Zorbas MA, Danels YJ et al. (1991) Cellular growth response to epidermal growth factor in colon carcinoma cells with an amplified epidermal growth factor receptor derived from a familial adenomatous polyposis patient. Cancer Res 51: 1452–1459

    PubMed  Google Scholar 

  34. Grothey A, Sargent D, Goldberg RM, Schmoll HJ (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22: 1209–1214

    Article  PubMed  Google Scholar 

  35. Gschwend JE (1996) [Apoptosis--principles and importance of programmed cell death for prostatic carcinoma]. Urologe A 35: 390–399

    Article  PubMed  Google Scholar 

  36. Guba M, Seeliger H, Kleespies A et al. (2004) Vascular endothelial growth factor in colorectal cancer. Int J Colorectal Dis 19: 510–517

    Article  PubMed  Google Scholar 

  37. Hanisch FG, Stadie TR, Deutzmann F, Peter-Katalinic J (1996) MUC1 glycoforms in breast cancer--cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation. Eur J Biochem 236: 318–327

    Article  PubMed  Google Scholar 

  38. Heinzerling JH, Huerta S (2006) Bowel perforation from Bevacizumab for the treatment of metastatic colon cancer: incidence, etiology, and management. Curr Surg 63: 334–337

    Article  PubMed  Google Scholar 

  39. Hennemann B, Beckmann G, Eichelmann A et al. (1998) Phase I trial of adoptive immunotherapy of cancer patients using monocyte-derived macrophages activated with interferon gamma and lipopolysaccharide. Cancer Immunol Immunother 45: 250–256

    PubMed  Google Scholar 

  40. Hensel F, Brandlein S, Eck M et al. (2001) A novel proliferation-associated variant of CFR-1 defined by a human monoclonal antibody. Lab Invest 81: 1097–1108

    PubMed  Google Scholar 

  41. Hensel F, Hermann R, Brandlein S et al. (2001) Regulation of the new coexpressed CD55 (decay-accelerating factor) receptor on stomach carcinoma cells involved in antibody SC-1-induced apoptosis. Lab Invest 81: 1553–1563

    PubMed  Google Scholar 

  42. Hensel F, Hermann R, Schubert C et al. (1999) Characterization of glycosylphosphatidylinositol-linked molecule CD55/decay-accelerating factor as the receptor for antibody SC-1-induced apoptosis. Cancer Res 59: 5299–5306

    PubMed  Google Scholar 

  43. Hochster HS, Hart LL, Ramanathan RK et al. (2006) Results of the TREE-2 cohort: Safety, tolerability, and efficacy of bevacizumab added to three oxaliplatin/fluoropyrimidine regimens as first-line treatment of metastatic colorectal cancer. Abstract 244: ASCO 2006

    Google Scholar 

  44. Hosono T, Fukao T, Ogihara J et al. (2005) Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem 280: 41487–41493

    Article  PubMed  Google Scholar 

  45. Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    Article  PubMed  Google Scholar 

  46. Illert B (2004) Induction of apoptosis and tumor cell regression by SC-1, a novel therapeutic IgM antibody for the treatment of gastric carcinomas. Scientific Proceedings of the 95th AACR 45: 1017

    Google Scholar 

  47. Illert B, Fein M, Otto C et al. (2005) Disseminated tumor cells in the blood of patients with gastric cancer are an independent predictive marker of poor prognosis. Scand J Gastroenterol 40: 843–849

    Article  PubMed  Google Scholar 

  48. Illert B, Otto C, Vollmers HP et al. (2005) Human antibody SC-1 reduces disseminated tumor cells in nude mice with human gastric cancer. Oncol Rep 13: 765–770

    PubMed  Google Scholar 

  49. Italiano A (2006) Targeting the epidermal growth factor receptor in colorectal cancer: advances and controversies. Oncology 70: 161–167

    Article  PubMed  Google Scholar 

  50. Jo M, Kim TH, Seol DW et al. (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6: 564–567

    Article  PubMed  Google Scholar 

  51. Kabbinavar F, Hurwitz HI, Fehrenbacher L et al. (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21: 60–65

    Article  PubMed  Google Scholar 

  52. Kang SM, Maeda K, Onoda N et al. (1997) Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis. Int J Cancer 74: 502–507

    Article  PubMed  Google Scholar 

  53. Khorana AA, Ryan CK, Cox C et al. (2003) Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with Stage II and Stage III colon carcinoma: a role for the host response in prognosis. Cancer 97: 960–968

    Article  PubMed  Google Scholar 

  54. Koenders PG, Peters WH, Wobbes T et al. (1992) Epidermal growth factor receptor levels are lower in carcinomatous than in normal colorectal tissue. Br J Cancer 65: 189–192

    PubMed  Google Scholar 

  55. Kohne CH, Folprecht G (2004) Current perspectives in the treatment of metastatic colorectal cancer. Ann Oncol (Suppl 4) 15: iv43–iv53

    Google Scholar 

  56. Kountouras J, Zavos C, Chatzopoulos D (2005) Apoptotic and anti-angiogenic strategies in liver and gastrointestinal malignancies. J Surg Oncol 90: 249–259

    Article  PubMed  Google Scholar 

  57. Lee JC, Chow NH, Wang ST, Huang SM (2000) Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer 36: 748–753

    Article  PubMed  Google Scholar 

  58. Lin YS, Nguyen C, Mendoza JL et al. (1999) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288: 371–378

    PubMed  Google Scholar 

  59. Lockhart AC, Berlin JD (2005) The epidermal growth factor receptor as a target for colorectal cancer therapy. Semin Oncol 32: 52–60

    Article  PubMed  Google Scholar 

  60. Lode HN, Reisfeld RA (2000) Targeted cytokines for cancer immunotherapy. Immunol Res 21: 279–288

    Article  PubMed  Google Scholar 

  61. MacPherson G, Kushnir N, Wykes M (1999) Dendritic cells, B cells and the regulation of antibody synthesis. Immunol Rev 172: 325–334

    Article  PubMed  Google Scholar 

  62. Maloney DG, Grillo-Lopez AJ, Bodkin DJ et al. (1997) IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol 15: 3266–3274

    PubMed  Google Scholar 

  63. Marini P, Denzinger S, Schiller D et al. (2006) Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 25: 5145–5154

    PubMed  Google Scholar 

  64. Martin F, Kearney JF (2000) Selection in the mature B cell repertoire. Curr Top Microbiol Immunol 252: 97–105

    PubMed  Google Scholar 

  65. Matsukawa H, Kanai T, Naganuma M et al. (2005) A novel apoptosis-inducing monoclonal antibody (anti-LHK) against a cell surface antigen on colon cancer cells. J Gastroenterol 40: 945–955

    Article  PubMed  Google Scholar 

  66. Matsumoto M, Natsugoe S, Okumura H et al. (2006) Overexpression of vascular endothelial growth factor-C correlates with lymph node micrometastasis in submucosal esophageal cancer. J Gastrointest Surg 10: 1016–1022

    Article  PubMed  Google Scholar 

  67. McKay JA, Murray LJ, Curran S et al. (2002) Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur J Cancer 38: 2258–2264

    Article  PubMed  Google Scholar 

  68. Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21: 2787–2799

    Article  Google Scholar 

  69. Meropol NJ BJHJ (2003) Multicenter study of ABX-EGF monotherapy in patients with metastatic colorectal cancer. Proc Am Soc Clin Oncol 36: A256

    Google Scholar 

  70. Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2: 957–964

    Article  PubMed  Google Scholar 

  71. Motoki K, Mori E, Matsumoto A et al. (2005) Enhanced apoptosis and tumor regression induced by a direct agonist antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2. Clin Cancer Res 11: 3126–3135

    Article  PubMed  Google Scholar 

  72. Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21: 624–630

    Article  PubMed  Google Scholar 

  73. Ozawa S, Ueda M, Ando N et al. (1989) Selective killing of squamous carcinoma cells by an immunotoxin that recognizes the EGF receptor. Int J Cancer 43: 152–157

    Article  PubMed  Google Scholar 

  74. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357: 1777–1789

    Article  PubMed  Google Scholar 

  75. Perrotte P, Matsumoto T, Inoue K et al. (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5: 257–265

    PubMed  Google Scholar 

  76. Pinto C, Di Fabio F, Siena S et al. (2006) Phase II Study of cetuximab plus FOLFIRI as first-line treatment in patients with unresectable/metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma (FOLCETUX study): Preliminary results. Abstract No: 4031, ASCO 2006

    Google Scholar 

  77. Pohle T, Brandlein S, Ruoff N et al. (2004) Lipoptosis: tumor-specific cell death by antibody-induced intracellular lipid accumulation. Cancer Res 64: 3900–3906

    Article  PubMed  Google Scholar 

  78. Prenzel N, Fischer OM, Streit S et al. (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8: 11–31

    Article  PubMed  Google Scholar 

  79. Prewett MC, Hooper AT, Bassi R et al. (2002) Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res 8: 994–1003

    PubMed  Google Scholar 

  80. Pukac L, Kanakaraj P, Humphreys R et al. (2005) HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92: 1430–1441

    Article  PubMed  Google Scholar 

  81. Radinsky R, Risin S, Fan D et al. (1995) Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1: 19–31

    PubMed  Google Scholar 

  82. Raymond E, Faivre S, Armand JP (2000) Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs (Suppl 1) 60: S15–S23

  83. Reed JC (2003) Apoptosis-targeted therapies for cancer. Cancer Cell 3: 17–22

    Article  PubMed  Google Scholar 

  84. Riesenberg R, Buchner A, Pohla H, Lindhofer H (2001) Lysis of prostate carcinoma cells by trifunctional bispecific antibodies (alpha EpCAM x alpha CD3). J Histochem Cytochem 49: 911–917

    PubMed  Google Scholar 

  85. Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580: 2879–2887

    Article  PubMed  Google Scholar 

  86. Ruf P, Lindhofer H (2001) Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 98: 2526–2534

    Article  PubMed  Google Scholar 

  87. Saltz LB, Meropol NJ, Loehrer PJ Sr et al. (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22: 1201–1208

    Article  PubMed  Google Scholar 

  88. Shah M, Ilson D, Ramanathan R (2006; 2005) A multicenter phase II study of irinotecan (CPT), cisplatin (CIS), and bevacizumab (BEV) in patients with unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma. Proc Am Soc Clin Oncol 24: 314 s (A4025)

    Google Scholar 

  89. Stacker SA, Achen MG, Jussila L et al. (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2: 573–583

    Article  PubMed  Google Scholar 

  90. Suntharalingam M, Dipetrillo T, Akerman P et al. (2006) Cetuximab, paclitaxel, carboplatin and radiation for esophageal and gastric cancer. Abstract No: 4029, ASCO 2006

    Google Scholar 

  91. Takahashi Y, Kitadai Y, Bucana CD et al. (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55: 3964–3968

    PubMed  Google Scholar 

  92. Thirion P, Michiels S, Pignon JP et al. (2004) Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: an updated meta-analysis. J Clin Oncol 22: 3766–3775

    Article  PubMed  Google Scholar 

  93. Thuss-Patience PC, Kretzschmar A, Repp M et al. (2005) Docetaxel and continuous-infusion fluorouracil versus epirubicin, cisplatin, and fluorouracil for advanced gastric adenocarcinoma: a randomized phase II study. J Clin Oncol 23: 494–501

    Article  PubMed  Google Scholar 

  94. Tournigand C, Andre T, Achille E et al. (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22: 229–237

    Article  PubMed  Google Scholar 

  95. Trefzer U, Weingart G, Chen Y et al. (2000) Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma. Int J Cancer 85: 618–626

    Article  PubMed  Google Scholar 

  96. Tyagi P (2005) Vatalanib (PTK787/ZK 222584) in combination with FOLFOX4 versus FOLFOX4 alone as first-line treatment for colorectal cancer: preliminary results from the CONFIRM-1 trial. Clin Colorectal Cancer 5: 24–26

    PubMed  Google Scholar 

  97. Valverde CM, Macarulla T, Casado E et al. (2006) Novel targets in gastric and esophageal cancer. Crit Rev Oncol Hematol 59: 128–138

    PubMed  Google Scholar 

  98. Vanhoefer U, Tewes M, Rojo F et al. (2004) Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J Clin Oncol 22: 175–184

    Article  PubMed  Google Scholar 

  99. Velders MP, Schreiber H, Kast WM (1998) Active immunization against cancer cells: impediments and advances. Semin Oncol 25: 697–706

    PubMed  Google Scholar 

  100. Vollmers HP, Dammrich J, Ribbert H et al. (1995) Apoptosis of stomach carcinoma cells induced by a human monoclonal antibody. Cancer 76: 550–558

    Article  PubMed  Google Scholar 

  101. Vollmers HP, Hensel F, Hermann R et al. (1998) Tumor-specific apoptosis induced by the human monoclonal antibody SC-1: a new therapeutical approach for stomach cancer. Oncol Rep 5: 35–40

    PubMed  Google Scholar 

  102. Vollmers HP, O’Connor R, Muller J et al. (1989) SC-1, a functional human monoclonal antibody against autologous stomach carcinoma cells. Cancer Res 49: 2471–2476

    PubMed  Google Scholar 

  103. Vollmers HP, O’Connor R, Muller J et al. (1989) SC-1, a functional human monoclonal antibody against autologous stomach carcinoma cells. Cancer Res 49: 2471–2476

    PubMed  Google Scholar 

  104. Vollmers HP, Zimmermann U, Krenn V et al. (1998) Adjuvant therapy for gastric adenocarcinoma with the apoptosis-inducing human monoclonal antibody SC-1: first clinical and histopathological results. Oncol Rep 5: 549–552

    PubMed  Google Scholar 

  105. Warren RS, Yuan H, Matli MR et al. (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95: 1789–1797

    PubMed  Google Scholar 

  106. Wilkinson NW, Black JD, Roukhadze E et al. (2004) Epidermal growth factor receptor expression correlates with histologic grade in resected esophageal adenocarcinoma. J Gastrointest Surg 8: 448–453

    Article  PubMed  Google Scholar 

  107. Wils J (1996) The treatment of advanced gastric cancer. Semin Oncol 23: 397–406

    PubMed  Google Scholar 

  108. Wu X, Fan Z, Masui H et al. (1995) Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 95: 1897–1905

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thalheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thalheimer, A., Braendlein, S., Vollmers, P. et al. Antikörpertherapie in klinischer und präklinischer Anwendung bei gastrointestinalen Karzinomen. Onkologe 13, 236–249 (2007). https://doi.org/10.1007/s00761-007-1190-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-007-1190-3

Schlüsselwörter

Keywords

Navigation