Skip to main content

Advertisement

Log in

Critical role of transglutaminase and other stress proteins during neurodegenerative processes

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Proteolytic stress, resulting from the intracellular accumulation of misfolded or aggregated proteins, which exceed the capacity of the ubiquitin–proteasome system to degrade them, plays a relevant role in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s chorea. Most of toxic protein aggregates are characterised by the presence of isopeptide bonds (cross-links) catalysed by transglutaminase activity; further, several disease-specific proteins—tau, amyloid-beta, alpha-synuclein, huntingtin—are in vitro and/or in vivo substrates of transglutaminase 2. These findings suggest an important role for transglutaminase 2-mediated cross-linking reactions in neurodegeneration. Therefore, the use of transglutaminase activity inhibitors could ameliorate neuronal cell death. New therapeutic perspectives also arise from the possibility to prevent or reduce protein aggregation by enhancing the activation of heat shock proteins, which have been shown to be potent suppressors of neurodegeneration in cell cultures/animal models. Interestingly, some heat shock proteins have been shown to be in vitro or in vivo cross-linked by transglutaminase 2. These observations seem to suggest that transglutaminase activity could be involved in the stabilization of intracellular protein aggregates by interfering with proteasomal degradation of misfolded proteins. Further studies are needed to validate leading hypotheses and to open new prospects for developing therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

ALS:

Amyotrophic lateral sclerosis

CSF:

Cerebrospinal fluid

ECM:

Extracellular matrix

GGEL:

γ-Glutamyl-ε-lysine

HD:

Huntington’s chorea

HSPs:

Heat shock proteins

NF-kappa B:

Nuclear factor-kappa B

NMDA:

N-methyl-d-aspartate

RA:

Retinoic acid

SCA:

Spinocerebellar ataxia

SBMA:

Spinobulbar muscular atrophy

TG(s):

Transglutaminase(s)

TG2:

Tissue transglutaminase

References

  • Andringa G, Lam KY, Chegary M, Wang X, Chase TN, Bennett MC (2004) Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson’s disease. FASEB J 18:932–934

    CAS  PubMed  Google Scholar 

  • Bailey CD, Johnson GV (2005) Tissue transglutaminase contributes to disease progression in the R6/2 Huntington’s disease mouse model via aggregate-independent mechanisms. J Neurochem 92:83–92

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Farrace MG, Mastroberardino PG et al (2007) Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. J Neurochem 100:36–49

    Article  CAS  PubMed  Google Scholar 

  • Bonelli RM, Aschoff A, Niederwieser G, Heuberger C, Jirikowski G (2002) Cerebrospinal fluid tissue transglutaminase as a biochemical marker for Alzheimer’s disease. Neurobiol Dis 11:106–110

    Article  CAS  PubMed  Google Scholar 

  • Boros S, Kamps B, Wunderink L, de Bruijn W, de Jong WW, Boelens WC (2004) Transglutaminase catalyzes differential crosslinking of small heat shock proteins and amyloid-beta. FEBS Lett 576:57–62

    Article  CAS  PubMed  Google Scholar 

  • Boros S, Ahrman E, Wunderink L, Kamps B, de Jong WW, Boelens WC, Emanuelsson CS (2006) Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Proteins 62:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Caccamo D, Currò M, Cusumano G, Crisafulli G, Ientile R (2004) Excitotoxin-induced changes in transglutaminase during differentiation of cerebellar granule cells. Amino Acids 26:197–201

    Article  CAS  PubMed  Google Scholar 

  • Caccamo D, Campisi A, Currò M, Aguennouz M, Li Volti G, Avola R, Ientile R (2005) Nuclear factor-kappaB activation is associated with glutamate-evoked tissue transglutaminase up-regulation in primary astrocyte cultures. J Neurosci Res 82:858–865

    Article  CAS  PubMed  Google Scholar 

  • Campisi A, Caccamo D, Raciti G, Cannavò G, Macaione V, Currò M, Macaione S, Vanella A, Ientile R (2003) Glutamate-induced increases in transglutaminase activity in primary cultures of astroglial cells. Brain Res 978:24–30

    Article  CAS  PubMed  Google Scholar 

  • Campisi A, Caccamo D, Li Volti G, Currò M, Parisi G, Avola R, Vanella A, Ientile R (2004) Glutamate-evoked redox state alterations are involved in tissue transglutaminase upregulation in primary astrocyte cultures. FEBS Lett 578:80–84

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273:1331–1349

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12:51–58

    Article  CAS  PubMed  Google Scholar 

  • Currò M, Condello S, Caccamo D, Ferlazzo N, Parisi G, Ientile R (2009) Homocysteine-induced toxicity increases TG2 expression in Neuro2a cells. Amino Acids 36:725–730

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Johnson GV (1994) Transglutaminase facilitates the formation of polymers of the beta-amyloid peptide. Brain Res 651:129–133

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Coutts IG, Saint R (2004) International Publication Number WO 2004/1133603, GB patent PCT/GB2004/002569

  • Ientile R, Caccamo D, Macaione V, Torre V, Macaione S (2002) NMDA-evoked excitotoxicity increases tissue transglutaminase in cerebellar granule cells. Neuroscience 115:723–729

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Caccamo D, Marciano MC, Currò M, Mannucci C, Campisi A, Calapai G (2004) Transglutaminase activity and transglutaminase mRNA transcripts in gerbil brain ischemia. Neurosci Lett 363:173–177

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33:385–394

    Article  CAS  PubMed  Google Scholar 

  • Jeitner TM, Bogdanov MB, Matson WR et al (2001) N(epsilon)-(gamma-l-glutamyl)-l-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. J Neurochem 79:1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Jeitner TM, Matson WR, Folk JE, Blass JP, Cooper AJ (2008) Increased levels of gamma-glutamylamines in Huntington disease CSF. J Neurochem 106:37–44

    Article  CAS  PubMed  Google Scholar 

  • Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJL (2009) Transglutaminases and neurodegeneration. J Neurochem 109:160–166

    Article  CAS  PubMed  Google Scholar 

  • Johnson GV, LeShoure R Jr (2004) Immunoblot analysis reveals that isopeptide antibodies do not specifically recognize the epsilon-(gamma-glutamyl)lysine bonds formed by transglutaminase activity. J Neurosci Methods 134:151–158

    Article  CAS  PubMed  Google Scholar 

  • Junn E, Ronchetti RD, Quezado MM, Kim SY, Mouradian MM (2003) Tissue transglutaminase-induced aggregation of alpha-synuclein: implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 100:2047–2052

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Grant P, Lee JH, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem 274:30715–30721

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2:E207–E209

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279:53725–53735

    Article  CAS  PubMed  Google Scholar 

  • Matthew A, Morimoto RI (1998) Role of the heat-shock response in the life and death of proteins. Ann N Y Acad Sci 851:99–111

    Article  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nature Rev Mol Cell Biol 1:120–129

    Article  CAS  Google Scholar 

  • Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    Article  CAS  PubMed  Google Scholar 

  • Miller ML, Johnson GV (1995) Transglutaminase cross-linking of the tau protein. J Neurochem 65:1760–1770

    Article  CAS  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  • Muma NA (2007) Transglutaminase is linked to neurodegenerative diseases. J Neuropathol Exp Neurol 66:258–263

    Article  CAS  PubMed  Google Scholar 

  • Nemes Z, Devreese B, Steinert PM, VanBeeumen J, Fesus L (2004) Cross-linking of ubiquitin, HSP27, parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer’s neurofibrillary tangles. FASEB J 18:1135–1137

    CAS  PubMed  Google Scholar 

  • Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 87:511–519

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  PubMed  CAS  Google Scholar 

  • Segers-Nolten IM, Wilhelmus MM, Veldhuis G, van Rooijen BD, Drukarch B, Subramaniam V (2008) Tissue transglutaminase modulates alpha-synuclein oligomerization. Protein Sci 17:1395–1402

    Article  CAS  PubMed  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    Article  CAS  PubMed  Google Scholar 

  • Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115:232–245

    Article  CAS  PubMed  Google Scholar 

  • Singer SM, Zainelli GM, Norlund MA, Lee JM, Muma NA (2002) Transglutaminase bonds in neurofibrillary tangles and paired helical filament tau early in Alzheimer’s disease. Neurochem Int 40:17–30

    Article  CAS  PubMed  Google Scholar 

  • Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189

    Article  PubMed  Google Scholar 

  • Tucholski J, Kuret J, Johnson GV (1999) Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 73:1871–1880

    CAS  PubMed  Google Scholar 

  • Van Raamsdonk JM, Pearson J, Bailey CD, Rogers DA, Johnson GV, Hayden MR, Leavitt BR (2005) Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. J Neurochem 95:210–220

    Article  PubMed  CAS  Google Scholar 

  • Vermes I, Steur EN, Jirikowski GF, Haanen C (2004) Elevated concentration of cerebrospinal fluid tissue transglutaminase in Parkinson’s disease indicating apoptosis. Mov Disord 19:1252–1254

    Article  PubMed  Google Scholar 

  • Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32:119–130

    Article  CAS  PubMed  Google Scholar 

  • Zainelli GM, Ross CA, Troncoso JC, Muma NA (2003) Transglutaminase cross-links in intranuclear inclusions in Huntington disease. J Neuropathol Exp Neurol 62:14–24

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Ientile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caccamo, D., Currò, M., Condello, S. et al. Critical role of transglutaminase and other stress proteins during neurodegenerative processes. Amino Acids 38, 653–658 (2010). https://doi.org/10.1007/s00726-009-0428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0428-3

Keywords

Navigation