Skip to main content
Log in

Molecular phylogeny of Shortia sensu lato (Diapensiaceae) based on multiple nuclear sequences

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Molecular phylogenetics is commonly used to perform accurate taxonomic classification. Furthermore, nuclear multilocus sequences have been applied to resolve ambiguous phylogenetic relationships based on conventional markers such as chloroplast and nuclear ribosomal DNA. Here, we reconstructed the phylogenetic tree of Diapensiaceae to revise the traditional classification of the genus Shortia sensu lato (s.l.), which includes Shortia sensu stricto (s.s.) and Schizocodon; whether the latter taxon is treated as an independent genus or includes Shortia s.l. has been disputed since its first description. The phylogeny based on eight nuclear markers developed for this study indicated that Shortia s.l. is not a monophyletic group and that Schizocodon and Shortia s.s. are reciprocally monophyletic. In addition, Schizocodon would be sister to other genus Diapensia despite their morphological differentiation. Thus, our data suggest that Schizocodon represents an independent genus. Our study demonstrated that multiple nuclear loci can resolve obscure phylogenetic relationships determined using conventional markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderberg AA, Rydin C, Källersjö M (2002) Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. Am J Bot 89:677–687

    Article  CAS  PubMed  Google Scholar 

  • APG (1998) An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard 85:531–553

    Article  Google Scholar 

  • APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Carstens BC, Knowles LL (2007) Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus Grasshoppers. Syst Biol 56:400–411

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Pasoda D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol. doi:10.1093/molbev/mss075

    Google Scholar 

  • Gibbard P, Head MJ (2009) The definition of the Quaternary system/era and the Pleistocene series/epoch. Quaternaire 20:125–133

    Article  Google Scholar 

  • Gray A (1878) Note sur le Shortia galacifolia et revision des Diapensiaceae. Ann Sci Nat 7:173–179

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hara H (1948) Enumeratio spermatophytarum Japonicarum, vol 1. Tokyo, Iwanamishoten, p 72 (in Japanese)

    Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higashi H, Sakaguchi S, Ikeda H, Isagi Y, Setoguchi H (2013) Multiple introgression events and range shifts in Schizocodon (Diapensiaceae) during the Pleistocene. Bot J Linn Soc 173:46–63

    Article  Google Scholar 

  • Ikeda H, Carlsen T, Fujii N, Brochmann C, Setoguchi H (2012) Pleistocene climatic oscillations and the speciation history of an alpine endemic and a widespread arctic-alpine plant. New Phytol 194:583–594

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Makino T (1901) Observations on the flora of Japan. Bot Mag Tokyo 15:141–153

    Article  Google Scholar 

  • Makino T (1907) Observations on the flora of Japan. Bot Mag Tokyo 21:29–34

    Article  Google Scholar 

  • Masamune G (1930) On new or noteworthy plants. Bot Mag Tokyo 44:221

    Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohwi J (1965) Flora of Japan. Tokyo, Shibundo, p 1008 (in Japanese)

    Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Bruce B (2005) Diapensiaceae. In: Wu Z, Raven PH (eds) Flora of China, vol 14. Science, Beijing, pp 235–237

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer

  • Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science 293:2242–2245

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trend Plant 5:65–84

    Google Scholar 

  • Rönblom K, Anderberg AA (2002) Phylogeny of Diapensiaceae based on molecular data and morphology. Syst Bot 27:383–395

    Google Scholar 

  • Rowland LJ, Dhanaraj AL, Polashock JJ, Arora R (2003) Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortScience 38:1428–1432

    CAS  Google Scholar 

  • Sequeira F, Sodré D, Ferrand N, Bernardi JAR, Sampaio I, Schneider H, Vallinoto M (2011) Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers. BMC Evol Biol 11:264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Setoguchi H, Ohba H (1995) Phylogenetic relationships in Crossostylis (Rhizophoraceae) inferred from restriction site variation of chloroplast DNA. J Plant Res 108:87–92

    Article  CAS  Google Scholar 

  • Siebold PF von, Zuccarini JG (1843) Plantarum, quas in Japonia collegit Dr. Ph. Fr. De Siebold genera nova, notis characteristicis delineationibusque illustrata proponunt. In: Abhandelungen der mathematisch-physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften. 3:723–726

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170

    Article  CAS  Google Scholar 

  • Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arboretum 66:73–94

    Google Scholar 

  • Wang J, Källman T, Liu J, Guo Q, Wu Y, Lin K, Lascoux M (2014) Speciation of two desert poplar species triggered by Pleistocene climatic oscillations. Heredity 112:156–164

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Fu Y, Arora R (2005) Intron-flanking EST–PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111:1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Ann Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang J, Zhang WH, Ricklefs RE, Qian H, Chen ZD, Wen J, Li JH (2004) Regional differences in rates of plant speciation and molecular evolution: a comparison between eastern Asia and eastern North America. Evolution 58:2175–2184

    CAS  PubMed  Google Scholar 

  • Yamazaki T (1968) On the genera Shortia and Schizocodon. J Jap Bot 43:81–90 (in Japanese)

    Google Scholar 

  • Yamazaki T (1990) Additional notes on Schizocodon and Shortia. J Jap Bot 65:309–319 (in Japanese)

    Google Scholar 

  • Yamazaki T (1993) Diapensiaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan. Kodansha, Tokyo, pp 1–3 (in English)

    Google Scholar 

  • Yu Y, Harris AJ, He XJ (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850

    Article  PubMed  Google Scholar 

  • Yu Y, Harris AJ, He XJ (2012) RASP (Reconstruct Ancestral State in Phylogenies) 2.1b. Available at http://mnh.scu.edu.cn/soft/blog/RASP

Download references

Acknowledgments

We thank T. Ohtsuki, N. Ishibashi, H. Oh, N. Ohki, S. Yamada, H. Yagi, T. Wakabayashi, H. Imogawa, S. Nozoe, Q. Han, D. Takahashi and Y. Umetsu (Kyoto University) for helpful advice regarding the experiments. This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (21370032 and 22405013 to HS) and a Grant-in-Aid for JSPS Fellows (HH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Higashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashi, H., Ikeda, H. & Setoguchi, H. Molecular phylogeny of Shortia sensu lato (Diapensiaceae) based on multiple nuclear sequences. Plant Syst Evol 301, 523–529 (2015). https://doi.org/10.1007/s00606-014-1088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1088-7

Keywords

Navigation