Skip to main content

Advertisement

Log in

Application of uncertain hurricane climate change projections to catastrophe risk models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

There is great interest in trying to understand how to take climate model projections of possible changes in hurricane behaviour due to climate change and apply them to hurricane risk models. In Knutson et al. (Bull Am Meteorol Soc 101:E303–E322, 2020), projections from many climate models were combined to form distributions of possible changes in hurricane frequency and intensity. It has been shown that propagating the uncertainty represented by these distributions is necessary to estimate the impact on risk correctly. Building on these results, we now consider how distributions of changes in hurricane frequency and intensity can be applied to hurricane risk models that are formulated in the standard event loss table and year loss table formats. Because of the uncertainty, this requires the use of novel simulation and weighting techniques that extend standard methods for adjusting risk models. We demonstrate that these novel techniques work in a simple hurricane risk model. We also present new analytical solutions that show how means and variances of risk change due to the application of uncertain adjustments. Finally, we use emulators to explore how the output from just a single evaluation of a hurricane risk model can be used to derive sensitivity estimates that would otherwise require a large number of evaluations of the model. The methods we present could readily be applied to full complexity hurricane risk models and will hopefully contribute to efforts to quantify the possible effects of climate change on present and future hurricane risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Some of the data used to create Figs. 1b, 2b, 3b and 4b in Knutson et al. (Knutson et al. 2020) was used in this study, and is available from Jewson et al. (2021).

The HURDAT data is available from AOML (AOML 2014).

References

  • AOML, 2014. HURDAT. [Online] Available at: https://www.aoml.noaa.gov/hrd/hurdat

  • Arthur W (2021) A statistical–parametric model of tropical cyclones for hazard assessment. NHESS 21:893–916

    Google Scholar 

  • Bilkhu R (2021) An R package to help analyse catastrophe model data. [Online] Available at: https://github.com/RandhirBilkhu/eltr

  • Bloemendaal N et al (2020) Generation of a global synthetic tropical cyclone hazard dataset using STORM. Sci Data. https://doi.org/10.1038/s41597-020-0381-2

    Article  Google Scholar 

  • Dottori, F. et al., 2020. Adapting to rising river flood risk in the EU under climate change. Luxembourg: Publications Office of the European Union

  • Emanuel K, Ravela S, Vivant E, Risi C (2006) A statistical deterministic approach to hurricane risk assessment. Bull Am Meteorol Soc 87:299–314

    Article  Google Scholar 

  • Friedman D (1972) Insurance and the natural hazards. ASTIN Bull 7:4–58

    Article  Google Scholar 

  • Glynis K, Iliopoulou T, Dimitriadis P (2021) Stochastic investigation of daily air temperature extremes from a global ground station network. Stoch Environ Res Risk Assess 35:1585–1603

    Article  Google Scholar 

  • Grieser J, Jewson S (2012) The RMS TC-rain model. Meteorol Z 21:79–88

    Article  Google Scholar 

  • Grossi P, Kunreuther H (2005) Catastrophe modelling: a new approach to managing risk. Springer, NY

    Book  Google Scholar 

  • Grow A, Hilton J (2014) Statistical emulation. In: Balakrishnan N, Colton Theodore et al (eds) Wiley statsref statistics reference online. Wiley. https://doi.org/10.1002/9781118445112.stat07987

    Chapter  Google Scholar 

  • Hall T, Jewson S (2007) Statistical modeling of North Atlantic tropical cyclone tracks. Tellus 59A:486–498

    Article  Google Scholar 

  • James M, Mason L (2005) Synthetic tropical cyclone database. J Waterw Port Coast Ocean Eng 131:181–192

    Article  Google Scholar 

  • Jewson S, Barnes C, Cusack S, Bellone E (2019) Adjusting catastrophe model ensembles using importance sampling, with application to damage estimation for varying levels of hurricane activity. Met Apps 27:1–14

    Google Scholar 

  • Jewson S (2021b) Interpretation of the Knutson et al. (2020) hurricane projections, the impact on annual maximum wind speed, and the role of uncertainty. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-021-02142-6

    Article  Google Scholar 

  • Jewson S (2021a) Conversion of the Knutson, et al Tropical cyclone climate change projections to risk model baselines. J Appl Meteorol Climatol 60:1517–1530

    Google Scholar 

  • Jewson, S. et al. (2021). Knutson et al (2020) Tropical cyclone projections data. [Online] Available at: https://doi.org/10.5281/zenodo.4738905

  • Kaczmarska J, Jewson S, Bellone E (2018) Quantifying the sources of simulation uncertainty in natural catastrophe models. Stoch Environ Res Risk Assess 32(3):591–605

    Article  Google Scholar 

  • Khare S, Bonazzi A, Mitas C, Jewson S (2015) Modelling clustering of natural hazard phenomena and the effect on re/insurance loss perspectives. Nat Hazard Earth Syst Sci 15(6):1357–1370

    Article  Google Scholar 

  • Knutson T et al (2020) Tropical cyclones and climate change assessment: Part II: projected response to anthropogenic warming. Bull Am Meteorol Soc 101(3):E303–E322

    Article  Google Scholar 

  • Lee C, Tippett M, Sobel A, Camargo S (2018) An environmentally forced tropical cyclone hazard model. J Adv Model Earth Syst 10:223–241

    Article  Google Scholar 

  • Michel G (2018) Risk modelling for hazards and disasters. Elsevier

    Google Scholar 

  • Mitchell-Wallace K, Jones M, Hillier J, Foote M (2017) Natual catastrophe risk management and modelling. John Wiley and Sons, USA

    Google Scholar 

  • Sassi M et al (2019) Impact of climate change on European winter and summer flood losses. Adv Water Resour 129:165–177

    Article  Google Scholar 

  • Shahiri Tabarestani E, Afzalimehr H (2021) Artificial neural network and multi-criteria decision-making models for flood simulation in GIS: Mazandaran Province Iran. Stoch Environ Res Risk Assess 35:2439–2457

    Article  Google Scholar 

  • Sobel A et al (2019) Tropical cyclone hazard to Mumbai in the recent historical climate. Mon Weather Rev 147:2355–2366

    Article  Google Scholar 

  • Vickery PJ, Skerlj PF, Twisdale LA (2000) Simulation of hurricane risk in the US using empirical track model. J Struct Eng 126(10):1222–1237

    Article  Google Scholar 

  • Wasserman L (2003) All of statistics. Springer, Boston

    Google Scholar 

  • Xianwu S, Bingrui C, Jufei Q (2021) Simulation of inundation caused by typhoon-induced probable maximum storm surge based on numerical modeling and observational data. Stoch Environ Res Risk Assess 35:2273–2286

    Article  Google Scholar 

  • Yonekura E, Hall T (2011) A statistical model of tropical cyclone tracks in the Western North Pacific with ENSO-dependent cyclogenesis. J Appl Meteorol Climatol 50:1725–1739

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Tom Knutson for providing the data represented in Figs. 1b, 2b, 3b and 4b in Knutson et al. (2020), and the US National Hurricane Centre for making the HURDAT data freely available.

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Jewson.

Ethics declarations

Conflict of interest

The author is the owner of Lambda Climate Research Ltd, a company that researches weather and climate risk.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix we define the various quantities used in the derivations in appendices B, C and D

\(N_{events} =\) number of events in the event set.

\(i = 1 \ldots n =\) index for the events.

\(l_{i} =\) loss for event \(i\).

\({\upmu }_{{l_{i} }} ,{\upsigma }_{{l_{i} }}^{2} =\) mean and variance of \(l_{i}\).

\(n_{i} =\) number of occurrences of event \(i\) in a year.

\({\upmu }_{{n_{i} }} ,{\upsigma }_{{n_{i} }}^{2} =\) mean and variance of \(n_{i}\).

\(\lambda_{i} =\) mean and variance of \(n_{i}\) when Poisson distributed.

\(r_{j} \ge 0\) = the scaling applied to \({\upmu }_{{n_{i} }}\) in the \(j\)′th subset of the event set.

\(s_{j} \ge 0 =\) the scaling applied to \(\sigma_{{n_{i} }}^{2}\) in the \(j\)′th subset of the event set. For the special case of a Poisson distribution, \(s_{j} = r_{j}\).

\({\upmu }_{{r_{j} }} , {\upsigma }_{{r_{j} }}^{2} =\) mean and variance of \(r_{j}\).

\({\upmu }_{{s_{j} }} , {\upsigma }_{{s_{j} }}^{2} =\) mean and variance of \(s_{j}\).

\(\Sigma\) is the sum over all events in the event set.

\(\Sigma_{j}\) is the sum over events in the \(j\)′th subset of the event set.

\(\Sigma_{ss}\) is the sum over subsets.

\(N = \Sigma n_{i} = \Sigma_{ss} \Sigma_{j} n_{i} =\) number of events in one year.

\(L = \Sigma n_{i} l_{i} = \Sigma_{ss} \Sigma_{j} n_{i} l_{i} =\) loss in one year.

\(E, V =\) expectation and variance over all random variables.

\(E_{rs} ,V_{rs} =\) expectation and variance over \(r\) and \(s\), holding the \(n_{i}\) and \(l_{i}\) fixed.

\(E_{n} ,V_{n} =\) expectation and variance over \(n_{i}\), holding \(r_{j}\) and \(s_{j}\) fixed.

\(E_{nl} ,V_{nl} =\) expectation and variance over \(n_{i}\) and \(l_{i}\), holding \(r_{j}\) and \(s_{j}\) fixed.

\(AAE_{base} ,AAE_{adj} =\) expectation of number of events in a year for the base and adjusted models.

\(AAE_{j} =\) expectation of number of events in a year in the \(j\)′th subset of the event set in the base model.

\(AAL_{base} ,AAL_{adj} =\) expectation of loss in a year (a.k.a. average annual loss) for the base and adjusted models.

\(AAL_{j} =\) expectation of loss in a year (a.k.a. average annual loss) in the \(j\)′th subset of the event set in the base model.

\(VAE_{base} ,VAE_{adj} =\) variance of the number of events in a year for the base and adjusted models.

\(VAE_{j} =\) variance of the number of events in a year in the \(j\)′th subset of the event set in the base model.

\(VAL_{base} ,VAL_{adj} =\) variance of the loss in a year for the base and adjusted models.

\(VAL_{j} =\) variance of the loss in a year in the \(j\)′th subset of the event set in the base model.

Appendix B

We now derive expressions for the AAE, AAL, VAE and VAL, based on the properties of the events in an ELT. The derivations use the standard properties of the expectation and variance operators, including expectation and variance of products. These expressions are used, with the secondary uncertainty set to zero, to calculate the first column in each panel in Fig. 3.

$$AAE_{base} = E\left( N \right) = E\left( {\Sigma n_{i} } \right) = \Sigma E(n_{i} ) = \Sigma {\upmu }_{{n_{i} }}$$
(A1)
$$VAE_{base} = V\left( N \right) = V\left( {\Sigma n_{i} } \right) = \Sigma V(n_{i} ) = \Sigma {\upsigma }_{{n_{i} }}^{2}$$
(A2)
$$AAL_{base} = E\left( L \right) = E\left( {\Sigma n_{i} l_{i} } \right) = \Sigma E(n_{i} l_{i} ) = \Sigma E(n_{i} )E(l_{i} ) = \Sigma {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }}$$
(A3)
$$\begin{gathered} VAL_{base} = V\left( L \right) = V\left( {\Sigma n_{i} l_{i} } \right) = \Sigma V(n_{i} l_{i} ) = \Sigma V(n_{i} )V\left( {l_{i} } \right) + \Sigma V(n_{i} )E(l_{i} )^{2} + \Sigma E(n_{i} )^{2} V\left( {l_{i} } \right) \hfill \\ = \Sigma \sigma_{{n_{i} }}^{2} \sigma_{{l_{i} }}^{2} + \Sigma \sigma_{{n_{i} }}^{2} \mu_{{l_{i} }}^{2} + \Sigma \mu_{{n_{i} }}^{2} \sigma_{{l_{i} }}^{2} \hfill \\ \end{gathered}$$
(A4)

Appendix C

We now derive expressions for the AAE, VAE, AAL and VAL for the more general case that includes adjustments to frequency distributions of subsets of the event set. The derivations use the laws of total expectation and variance. These expressions are used, with the secondary uncertainty set to zero, to calculate the third column in each panel in Fig. 3.

$$\begin{gathered} AAE_{adj} = E\left( N \right) = E\left( {\Sigma_{ss} \Sigma_{j} n_{i} } \right) = \Sigma_{ss} \Sigma_{j} E(n_{i} ) = \Sigma_{ss} \Sigma_{j} E_{rs} \left( {E_{nl} \left( {n_{i} |r_{j} ,s_{j} } \right)} \right) = \Sigma_{ss} \Sigma_{j} E_{rs} \left( {r_{j} {\upmu }_{{n_{i} }} } \right) \hfill \\ = \Sigma_{ss} \Sigma_{j} {\upmu }_{{r_{j} }} {\upmu }_{{n_{i} }} = \Sigma_{ss} {\upmu }_{{r_{j} }} \Sigma_{j} {\upmu }_{{n_{i} }} \hfill \\ \end{gathered}$$
(A5)
$$\begin{gathered} VAE_{adj} = V\left( N \right) = V\left( {\Sigma_{ss} \Sigma_{j} n_{i} } \right) = E_{rs} V_{nl} \Sigma_{ss} \Sigma_{j} (n_{i} |r_{j} ,s_{j} ) + V_{rs} E_{nl} \Sigma_{ss} \Sigma_{j} (n_{i} |r_{j} ,s_{j} ) \hfill \\ = E_{rs} \Sigma_{ss} \Sigma_{j} V_{nl} (n_{i} |r_{j} ,s_{j} ) + V_{rs} \Sigma_{ss} \Sigma_{j} E_{nl} (n_{i} |r_{j} ,s_{j} ) = E_{rs} \Sigma_{ss} \Sigma_{j} s_{j} {\upsigma }_{{n_{i} }}^{2} + V_{rs} \Sigma_{ss} \Sigma_{j} r_{j} {\upmu }_{{n_{i} }} \hfill \\ = E_{rs} \left( {\Sigma_{ss} s_{j} \Sigma_{j} {\upsigma }_{{n_{i} }}^{2} } \right) + V_{rs} \left( {\Sigma_{ss} r_{j} \Sigma_{j} {\upmu }_{{n_{i} }} } \right) \hfill \\ = \Sigma_{ss} {\upmu }_{{s_{j} }} \Sigma_{j} {\upsigma }_{{n_{i} }}^{2} + \Sigma_{ss} \Sigma_{ss} cov(r_{j} ,r_{k} )\left( {\Sigma_{j} {\upmu }_{{n_{i} }} } \right)\left( {\Sigma_{k} {\upmu }_{{n_{i} }} } \right) \hfill \\ \end{gathered}$$
(A6)
$$\begin{gathered} AAL_{adj} = E\left( L \right) = E\left( {\Sigma_{ss} \Sigma_{j} n_{i} l_{i} } \right) = \Sigma_{ss} \Sigma_{j} E(n_{i} l_{i} ) = \Sigma_{ss} \Sigma_{j} E_{rs} \left( {E_{nl} \left( {n_{i} l_{i} |r_{j} ,s_{j} } \right)} \right) \hfill \\ = \Sigma_{ss} \Sigma_{j} E_{rs} \left( {r_{j} {\upmu }_{{n_{i} }} l_{i} } \right) = \Sigma_{ss} \Sigma_{j} {\upmu }_{{r_{j} }} {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }} = \Sigma_{ss} {\upmu }_{{r_{j} }} \Sigma_{j} {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }} \hfill \\ \end{gathered}$$
(A7)
$$\begin{gathered} VAL_{adj} = V\left( N \right) = V\left( {\Sigma_{ss} \Sigma_{j} n_{i} l_{i} } \right) = E_{rs} V_{nl} \Sigma_{ss} \Sigma_{j} (n_{i} l_{i} |r_{j} ,s_{j} ) + V_{rs} E_{nl} \Sigma_{ss} \Sigma_{j} (n_{i} l_{i} |r_{j} ,s_{j} ) \hfill \\ = E_{rs} \Sigma_{ss} \Sigma_{j} V_{nl} (n_{i} l_{i} |r_{j} ,s_{j} ) + V_{rs} \Sigma_{ss} \Sigma_{j} E_{nl} (n_{i} l_{i} |r_{j} ,s_{j} ) \hfill \\ = E_{rs} \Sigma_{ss} \Sigma_{j} s_{j} {\upsigma }_{{n_{i} }}^{2} {\upsigma }_{{l_{i} }}^{2} + E_{rs} \Sigma_{ss} \Sigma_{j} r_{j}^{2} {\upmu }_{{n_{i} }}^{2} {\upsigma }_{{l_{i} }}^{2} + E_{rs} \Sigma_{ss} \Sigma_{j} s_{j} {\upsigma }_{{n_{i} }}^{2} {\upmu }_{{l_{i} }}^{2} + V_{rs} \Sigma_{ss} \Sigma_{j} r_{j} {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }} \hfill \\ = \Sigma_{ss} {\upmu }_{{s_{j} }} \Sigma_{j} {\upsigma }_{{n_{i} }}^{2} {\upsigma }_{{l_{i} }}^{2} + \Sigma_{ss} E_{rs} \left( {r_{j}^{2} } \right)\Sigma_{j} {\upmu }_{{n_{i} }}^{2} {\upsigma }_{{l_{i} }}^{2} + \Sigma_{ss} {\upmu }_{{s_{j} }} \Sigma_{j} {\upsigma }_{{n_{i} }}^{2} {\upmu }_{{l_{i} }}^{2} + \Sigma_{ss} {\upsigma }_{{r_{j} }}^{2} (\Sigma_{j} {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }} )^{2} \hfill \\ = \Sigma_{ss} {\upmu }_{{s_{j} }} \Sigma_{j} {\upsigma }_{{n_{i} }}^{2} {\upsigma }_{{l_{i} }}^{2} + \Sigma_{ss} ({\upsigma }_{{r_{j} }}^{2} + {\upmu }_{{r_{j} }}^{2} )\Sigma_{j} {\upmu }_{{n_{i} }}^{2} {\upsigma }_{{l_{i} }}^{2} \hfill \\ + \Sigma_{ss} {\upmu }_{{s_{j} }} \Sigma_{j} {\upsigma }_{{n_{i} }}^{2} {\upmu }_{{l_{i} }}^{2} + \Sigma_{ss} \Sigma_{ss} cov(r_{j} ,r_{k} )\left( {\Sigma_{j} {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }} } \right)\left( {\Sigma_{k} {\upmu }_{{n_{i} }} {\upmu }_{{l_{i} }} } \right) \hfill \\ \end{gathered}$$
(A8)

Appendix D

By combining the expressions in Appendix B and Appendix C, with no secondary uncertainty, we can derive expressions for the changes in the four metrics due to the application of uncertain frequency changes. These expressions allow us to calculate the diagnostics for an adjusted YLT, in terms of the diagnostics for the base YLT and the mean and variance of the adjustments, without having to resimulate or reweight the YLT.

$$AAE_{adj} = \Sigma_{ss} {\upmu }_{{r_{j} }} AAE_{j}$$
(A9)
$$VAE_{adj} = \Sigma_{ss} {\upmu }_{{r_{j} }} VAE_{j} + \Sigma_{ss} \Sigma_{ss} cov\left( {r_{j} ,r_{k} } \right)\left( {AAE_{j} } \right)\left( {AAE_{k} } \right)$$
(A10)
$$AAL_{adj} = \Sigma_{ss} {\upmu }_{{r_{j} }} AAL_{j}$$
(A11)
$$VAL_{adj} = \Sigma_{ss} {\upmu }_{{r_{j} }} VAL_{j} + \Sigma_{ss} \Sigma_{ss} cov\left( {r_{j} ,r_{k} } \right)\left( {AAL_{j} } \right)\left( {AAL_{k} } \right)$$
(A12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jewson, S. Application of uncertain hurricane climate change projections to catastrophe risk models. Stoch Environ Res Risk Assess 36, 3355–3375 (2022). https://doi.org/10.1007/s00477-022-02198-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-022-02198-y

Keywords

Navigation