Skip to main content
Log in

Structural and functional characterization of S-adenosylmethionine (SAM) synthetase from Pichia ciferrii

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

S-adenosylmethionine synthetase (SAM-s) catalyzes the synthesis of S-adenosylmethionine (SAM), which is essential for methylation, transcription, proliferation, and production of secondary metabolites. Here SAM-s from Pichia ciferrii were selectively cloned using RNA CapFishing and rapid amplification of cDNA ends (RACE). The putative full-length cDNA of SAM-s encoded a 383 amino acid protein (42.6 kDa), which has highly conserved metal binding sites, a phosphate-binding site, and functionally important motifs. The corresponding enzyme was over-expressed in a heterologous host of Pichia pastoris, and then purified to a homogenous form. Enzyme kinetics, immunoblotting, circular dichroism (CD), high performance liquid chromatography (HPLC), and molecular modeling were conducted to characterize the SAM-s from P. ciferrii. Structural and functional studies of SAM-s will provide important insights for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grillo MA, Colombatto S (2005) S-adenosylmethionine and protein methylation. Amino Acids 28:357–362

    Article  CAS  Google Scholar 

  2. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    CAS  Google Scholar 

  3. Roje S (2006) S-Adenosyl-l-methionine: beyond the universal methyl group donor. Phytochemistry 67:1686–1698

    Article  CAS  Google Scholar 

  4. Ingrosso D, Fowler AV, Bleibaum J, Clarke S (1989) Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J Biol Chem 264:20131–20139

    CAS  Google Scholar 

  5. Lozano MJ, Remsing LL, Quiros LM, Brana AF, Fernandez E, Sanchez C, Mendez C, Rohr J, Salas JA (2000) Characterization of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus. J Biol Chem 275:3065–3074

    Article  CAS  Google Scholar 

  6. Jackson M, Brennan PJ (2009) Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 284:1949–1953

    Article  CAS  Google Scholar 

  7. Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  8. Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, Hong SK, Suh JW (2003) Accumulation of S-adenosyl-l-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J Bacteriol 185:592–600

    Article  CAS  Google Scholar 

  9. Hilti N, Graub R, Jorg M, Arnold P, Schweingruber AM, Schweingruber ME (2000) Gene sam1 encoding adenosylmethionine synthetase: effects of its expression in the fission yeast Schizosaccharomyces pombe. Yeast 16:1–10

    Article  CAS  Google Scholar 

  10. Wei Y, Newman EB (2002) Studies on the role of the metK gene product of Escherichia coli K-12. Mol Microbiol 43:1651–1656

    Article  CAS  Google Scholar 

  11. Theologis A (1992) One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70:181–184

    Article  CAS  Google Scholar 

  12. Bradley JD, Flusser D, Katz BP, Schumacher HR Jr, Brandt KD, Chambers MA, Zonay LJ (1994) A randomized, double blind, placebo controlled trial of intravenous loading with S-adenosylmethionine (SAM) followed by oral SAM therapy in patients with knee osteoarthritis. J Rheumatol 21:905–911

    CAS  Google Scholar 

  13. Pascale RM, Marras V, Simile MM, Daino L, Pinna G, Bennati S, Carta M, Seddaiu MA, Massarelli G, Feo F (1992) Chemoprevention of rat liver carcinogenesis by S-adenosyl-l-methionine: a long-term study. Cancer Res 52:4979–4986

    CAS  Google Scholar 

  14. Mischoulon D, Fava M (2002) Role of S-adenosyl-l-methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr 76:1158S–1161S

    CAS  Google Scholar 

  15. Sargent T III, Kusubov N, Taylor SE, Budinger TF (1992) Tracer kinetic evidence for abnormal methyl metabolism in schizophrenia. Biol Psychiatry 32:1078–1090

    Article  Google Scholar 

  16. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395

    Article  CAS  Google Scholar 

  17. López-Vara MC, Gasset M, Pajares MA (2000) Refolding and characterization of rat liver methionine adenosyltransferase from Escherichia coli inclusion bodies. Protein Expr Purif 19:219–226

    Article  Google Scholar 

  18. Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S (2009) DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-l-methionine production in Pichia pastoris. J Biotechnol 141:97–103

    Article  CAS  Google Scholar 

  19. Zhang J, Wang X, Su E, Fang G, Ren Y, Wei D (2008) A new fermentation strategy for S-adenosylmethionine production in recombinant Pichia pastoris. Biochem Eng J 41:74–78

    Article  Google Scholar 

  20. Yoon G-S, Ko K-H, Kang H-W, Suh J-W, Kim Y-S, Ryu Y-W (2006) Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enzym Microb Technol 39:466–473

    Article  CAS  Google Scholar 

  21. Choe HH, Hwang H, Kim S, Yoon S, Jo DH, Ryu Y, Kim TD (2009) Identification and characterization of a novel oligomeric decaprenyl diphosphate synthase. Protein Peptide Lett 16:1036–1040

    Article  CAS  Google Scholar 

  22. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  23. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  CAS  Google Scholar 

  24. McQueney MS, Markham GD (1995) Investigation of monovalent cation activation of S-adenosylmethionine synthetase using mutagenesis and uranyl inhibition. J Biol Chem 270:18277–18284

    Article  CAS  Google Scholar 

  25. Mingorance J, Alvarez L, Sanchez-Gongora E, Mato JM, Pajares MA (1996) Site-directed mutagenesis of rat liver S-adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state. Biochem J 315(Pt 3):761–766

    CAS  Google Scholar 

  26. Takusagawa F, Kamitori S, Markham GD (1996) Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry 35:2586–2596

    Article  CAS  Google Scholar 

  27. Deigner HP, Mato JM, Pajares MA (1995) Study of the rat liver S-adenosylmethionine synthetase active site with 8-azido ATP. Biochem J 308(Pt 2):565–571

    CAS  Google Scholar 

  28. Maister HG, Rogovin SP, Stodola FH, Wickerham LJ (1962) Formation of extracellular sphingolipids by microorganisms: IV. pilot-plant production of tetraacetylphytosphingosine by Hansenula ciferrii. Appl Microbiol 10:401–406

    CAS  Google Scholar 

  29. Kamarthapu V, Rao KV, Srinivas PN, Reddy GB, Reddy VD (2008) Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochim Biophys Acta 1784:1949–1958

    CAS  Google Scholar 

  30. Takusagawa F, Kamitori S, Misaki S, Markham GD (1996) Crystal structure of S-adenosylmethionine synthetase. J Biol Chem 271:136–147

    Article  CAS  Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  32. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  Google Scholar 

  33. Komoto J, Yamada T, Takata Y, Markham GD, Takusagawa F (2004) Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry 43:1821–1831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. R01-2003-000-10283-0 from the Basic Research Program, Korea Science and Engineering Foundation. T.D.K. is supported by a Korean Research Foundation Grant funded by the Korean Government (KRF-2009-0089832) and by a Research Grant from Ajou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonwoo Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S., Lee, W., Kim, M. et al. Structural and functional characterization of S-adenosylmethionine (SAM) synthetase from Pichia ciferrii . Bioprocess Biosyst Eng 35, 173–181 (2012). https://doi.org/10.1007/s00449-011-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0640-x

Keywords

Navigation