Skip to main content
Log in

The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The viscosity of a series of six synthetic dacitic liquids, containing up to 5.04 wt% dissolved water, was measured above the glass transition range by parallel-plate viscometry. The temperature of the 1011 Pa s isokom decreases from 1065 K for the anhydrous liquid, to 864 K and 680 K for water contents of 0.97 and 5.04 wt% H2O. Including additional measurements at high temperatures by concentric-cylinder and falling-sphere viscometry, the viscosity (η) can be expressed as a function of temperature and water content w according to: \(\log _{10} {\text{ }}\eta = - 4.43{\text{ }} + {\text{ }}{{\left( {7618.3 - 17.25{\text{ }}\log _{10} {\text{ }}\left[ {w{\text{ }} + {\text{ }}0.26} \right]} \right)} \mathord{\left/ {\vphantom {{\left( {7618.3 - 17.25{\text{ }}\log _{10} {\text{ }}\left[ {w{\text{ }} + {\text{ }}0.26} \right]} \right)} {\left( {T - \left\{ {406.1 - 292.6{\text{ }}\log _{10} {\text{ }}\left[ {w{\text{ }} + {\text{ }}0.26} \right]} \right\}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {T - \left\{ {406.1 - 292.6{\text{ }}\log _{10} {\text{ }}\left[ {w{\text{ }} + {\text{ }}0.26} \right]} \right\}} \right)}}\) where η is in Pa s, T is temperature in K, and w is in weight percent. Within the conditions of measurement, this parameterization reproduces the 76 viscosity data with a root-mean square deviation (RMSD) of 0.16 log units in viscosity, or 7.8 K in temperature. The measurements show that water decreases the viscosity of the dacitic liquids more than for andesitic liquids, but less than for rhyolites. At low temperatures and high water contents, andesitic liquids are more viscous than the dacitic liquids, which are in turn more viscous than rhyolitic liquids, reversing the trend seen for high temperatures and low water contents. This suggests that the relative viscosity of different melts depends on temperature and water content as much as on bulk melt composition and structure. At magmatic temperatures, rhyolites are orders of magnitude more viscous than dacites, which are slightly more viscous than andesites. During degassing, all three liquids undergo a rapid viscosity increase at low water contents, and both dacitic and andesitic liquids will degas more efficiently than rhyolitic liquids. During cooling and differentiation, changing melt chemistry, decreasing temperature and increasing crystal content all lead to increases in the viscosity of magma (melt plus crystals). Under closed system conditions, where melt water content can increase during crystallization, viscosity increases may be small. Conversely, viscosity increases are very abrupt during ascent and degassing-induced crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alidibirov M, Dingwell DB, Stevenson RJ, Hess KU, Webb SL, Zinke J (1997) Physical properties of the 1980 Mount St. Helens cryptodome magma. Bull Volcanol 59:103–111

    Article  Google Scholar 

  • Avard G, Whittington A, Rose W, Matias O, Cornejo J (2006) Domes and flows: do temporal trends in dacitic magma chemistry and rheological behavior at Santiaguito, Guatemala, reflect magma chamber or conduit processes? EOS Trans AGU 87(52) Fall Meet Suppl, Abstract V51E-1718

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Behrens H, Romano C, Nowak M, Holtz F, Dingwell DB (1996) Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): an interlaboratory study. Chem Geol 128:41–63

    Article  Google Scholar 

  • Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264:402–419

    Article  Google Scholar 

  • Castro JM, Mercer C (2004) Microlite textures and volatile contents of obsidian from the Inyo volcanic chain, California. Geophys Res Lett 31:L18605 4pp. DOI 10.1029/2004GL020489

  • Costa A (2005) Viscosity of high crystal content melts: dependence on solid fraction. Geophys Res Lett 32:L22308 5pp. DOI 10.1029/2005GL024303

    Article  Google Scholar 

  • Dingwell DB, Romano C, Hess K-U (1996) The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism. Contrib Mineral Petrol 124:19–28

    Article  Google Scholar 

  • Eichelberger JC, Izbekov PE, Browne BL (2006) Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos 87:135–154

    Article  Google Scholar 

  • Faxen H (1923) Die Bewegung einer starren Kugel längs der Achse eines nit zäher Flüssigkeit gefüllten Rohres. Arkiv för Mathematik, Astronomi och Fysik 17(27):1–28

    Google Scholar 

  • Gardner JE, Carey S, Sigurdsson H, Rutherford MJ (1995) Influence of magma composition on the eruptive activity of Mount St. Helens, Washington. Geology 23:523–526

    Article  Google Scholar 

  • Getson JM, Whittington AG (2007) Liquid and magma viscosity in the anorthite–forsterite–diopside–quartz system, and implications for the viscosity–temperature paths of cooling magmas. J Geophys Res 112:B10203. DOI 10.1029/2006JB004812

    Article  Google Scholar 

  • Giordano D, Dingwell DB (2003) Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet Sci Lett 208:337–349

    Article  Google Scholar 

  • Giordano D, Nichols ARL, Dingwell DB (2005) Glass transition temperatures of natural hydrous melts; a relationship with shear viscosity and implications for the welding process. J Volcanol Geotherm Res 142:105–118

    Article  Google Scholar 

  • Hamilton DL, Burnham CW, Osborn EF (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5:21–39

    Google Scholar 

  • Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380

    Article  Google Scholar 

  • Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107:2021 24pp. DOI 10.1029/2001JB000281

  • Hess K-U, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Hess K-U, Cordonnier B, Lavallé Y, Dingwell DB (2007) High-load, high-temperature deformation apparatus for synthetic and natural silicate melts. Rev Sci Instrum 78:075102

    Article  Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416

    Article  Google Scholar 

  • Lavallée Y, Hess K-U, Cordonnier B, Dingwell DB (2007) Non-Newtonian rheological law for highly crystalline dome lavas. Geology 35:843–846

    Article  Google Scholar 

  • Leschik M, Heide G, Frischat GH, Behrens H, Wiedenbeck M, Wagner N, Heide K, Geißler H, Reinholz U (2004) Determination of H2O and D2O contents in rhyolitic glasses using KFT, NRA, EGA, IR spectroscopy, and SIMS. Phys Chem Glasses 45:238–251

    Google Scholar 

  • Liebske C, Behrens H, Holtz F, Lange RA (2003) The influence of pressure and composition on the viscosity of andesitic melts. Geochim Cosmochim Acta 67:473–485

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J Volcanol Geotherm Res 143:219–235

    Article  Google Scholar 

  • Mandeville CW, Webster JD, Rutherford MJ, Taylor BE, Timbal A, Faure K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Mineral 87:813–821

    Google Scholar 

  • Marsh B (1981) On the crystallinity, probability of occurrence and rheology of lava and magma. Contrib Mineral Petrol 78:85–98

    Article  Google Scholar 

  • Melson WG (1983) Monitoring the 1980–1982 eruptions of Mount St. Helens; compositions and abundances of glass. Science 221:1387–1391

    Article  Google Scholar 

  • Mysen B, Richet P (2005) Silicate glasses and melts—properties and structure. Elsevier, Amsterdam

    Google Scholar 

  • Neuville DR, Courtial P, Dingwell DB, Richet P (1993) Thermodynamic and rheological properties of rhyolite and andesite melts. Contrib Mineral Petrol 113:572–581

    Article  Google Scholar 

  • Ochs FA III, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317

    Article  Google Scholar 

  • Ohlhorst S, Behrens B, Holtz F (2001) Compositional dependence of molar absorptivities of near-infrared OH– and H (sub 2) O bands in rhyolitic to basaltic glasses. Chem Geol 174:5–20

    Article  Google Scholar 

  • Petford N (2003) Rheology of granitic magmas during ascent and emplacement. Annu Rev Earth Planet Sci 31:399–427

    Article  Google Scholar 

  • Richet P, Lejeune AM, Holtz F, Roux J (1996) Water and the viscosity of andesite melts. Chem Geol 128:185–197

    Article  Google Scholar 

  • Richet P, Whittington A, Behrens H, Holtz F, Ohlhorst S, Wilke M (2000) Water and the density of silicate glasses. Contrib Mineral Petrol 138:337–347

    Article  Google Scholar 

  • Russell JK, Giordano D, Dingwell DB (2003) High-temperature limits on viscosity of non-Arrhenian silicate melts. Am Mineral 88:1390–1394

    Google Scholar 

  • Scaillet B, Holtz F, Pichavant M, Schmidt M (1996) Viscosity of Himalayan leucogranites: implications for mechanisms of granitic magma ascent. J Geophys Res 101:27691–27699

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (1997) Rheological properties of granitic magmas in their crystallization range. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic, Dodrecht, pp 1–29

    Google Scholar 

  • Scaillet B, Whittington A, Martel C, Pichavant M, Holtz F (2000) Phase equilibrium constraints on the viscosity of silicic magmas; II, Implications for mafic-silicic mixing processes. Trans R Soc Edinb 91:61–72

    Google Scholar 

  • Schulze F, Behrens H, Holtz F, Roux J, Johannes W (1996) The influence of H2O on the viscosity of a haplogranitic melt. Am Mineral 81:1155–1165

    Google Scholar 

  • Spera FJ (2000) Physical properties of magma. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, New York, pp 171–190

    Google Scholar 

  • Vetere F, Behrens H, Holtz F, Neuville D (2006) Viscosity of andesitic melts—new experimental data and a revised calculation model. Chem Geol 228:233–245

    Article  Google Scholar 

  • Whittington A, Richet P, Holtz F (2000) Water and the viscosity of hydrous depolymerized aluminosilicate melts. Geochim Cosmochim Acta 64:3725–3736

    Article  Google Scholar 

  • Whittington A, Richet P, Linard Y, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. Chem Geol 174:209–224

    Article  Google Scholar 

  • Whittington A, Richet P, Behrens H, Holtz F, Scaillet B (2004) Experimental temperature–X(H2O)–viscosity relationship for leucogranites, and comparison with synthetic silicic liquids. Trans R Soc Edinb 95:59–72

    Article  Google Scholar 

  • Zhang Y, Xu ZJ, Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from kinetic experiments, and a new viscosity model. Am Mineral 88:1741–1752

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant EAR-0407915 to Alan Whittington. Additional support by the German DFG (grant Be1720/12) is also acknowledged. Jackie Getson is thanked for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Whittington.

Additional information

Editorial responsibility: D. Dingwell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittington, A.G., Hellwig, B.M., Behrens, H. et al. The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull Volcanol 71, 185–199 (2009). https://doi.org/10.1007/s00445-008-0217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0217-y

Keywords

Navigation