Skip to main content
Log in

Interactions between nematodes and their microbial enemies in coastal sand dunes

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

European foredunes are almost exclusively colonised by Ammophila arenaria, and both the natural succession and the die-out of this plant have been linked to populations of plant-parasitic nematodes (PPN). The overarching aim of this study was to investigate top-down control processes of PPN in these natural ecosystems through comparative analyses of the diversity and dynamics of PPN and their microbial enemies. Our specific aims were, first, to identify and quantify PPN microbial enemies in European sand dunes; second, to assess their life history traits, their spatial and temporal variation in these ecosystems, and third, to evaluate their control potential of PPN populations. This was done by seasonal sampling of a range of sites and making observations on both the nematode and the microbial enemy communities in rhizosphere sand. Nine different nematode microbial enemies belonging to different functional groups were detected in European sand dunes. Their high diversity in these low productivity ecosystems could both result from or lead to the lack of dominance of a particular nematode genus. The distribution of microbial enemies was spatially and temporally variable, both among and within sampling sites. Obligate parasites, either with low host-specificity or having the ability to form an environmentally resistant propagule, are favoured in these ecosystems and are more frequent and abundant than facultative parasites. Three microbial enemies correlated, either positively or negatively, with PPN population size: Catenaria spp., Hirsutella rhossiliensis and Pasteuria penetrans. Microbial-enemy supported links in the food-web may be involved in the control of PPN populations through indirect effects. The endospore-forming P. penetrans was the most successful top-down control agent, and was implicated in the direct control of Meloidogyne spp. and indirect facilitation of Pratylenchus spp. Overall, our findings suggest strong and diverse top-down control effects on the nematode community in these natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Philos Trans R Soc Lond B 291:451–525

    Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Clark IM, Morton CO, Montes de Oca N, Gray PA, Kerry BR (2003) Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biocontrol agent of root-knot nematodes. Mycol Res 107:206–212

    PubMed  Google Scholar 

  • Atkins SD, Mauchline TH, Kerry BR, Hirsch PR (2004) Development of a transformation system for the nematophagous fungus Pochonia chlamydosporia. Mycol Res 108:654–661

    PubMed  CAS  Google Scholar 

  • Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BR (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    PubMed  CAS  Google Scholar 

  • Barron GL (1977) The nematode destroying fungi. Canadian Publications, Ontario

    Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Google Scholar 

  • Brinkman EP, Duyts H, van der Putten WH (2005a) Competition between endoparasite nematodes and effect on biomass of Ammophila arenaria (marram grass) as affected by timing of inoculation and plant age. Nematology 7:169–178

    Google Scholar 

  • Brinkman EP, Duyts H, van der Putten WH (2005b) Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos 110:417–427

    Google Scholar 

  • Brinkman EP, Duyts H, van der Putten WH (2008) Interactions between root-feeding nematodes depend on plant species identity. Soil Biol Biochem 40:2186–2193

    CAS  Google Scholar 

  • Ciancio A (1995) Density-dependent parasitism of Xiphinema diversicaudatum by Pasteuria penetrans in a naturally infested field. Phytopathology 85:144–149

    Google Scholar 

  • Clay K, Kover PX (1996) The Red Queen hypothesis and plant/pathogen interactions. Annu Rev Phytopathol 34:29–50

    PubMed  CAS  Google Scholar 

  • Costa SR, Kerry BR, Bardgett RD, Davies KG (2006) Exploitation of immunofluorescence for the quantification and characterization of small numbers of Pasteuria endospores. FEMS Microbiol Ecol 58:593–600

    PubMed  CAS  Google Scholar 

  • Davies KG (2009) Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant parasitic nematode host, Meloidogyne spp. Adv Parasitol 68:211–245

    PubMed  Google Scholar 

  • Davies KG, Redden M (1997) Diversity and partial characterization of putative virulence determinants in Pasteuria penetrans, the hyperparasitic bacterium of root-knot nematodes (Meloidogyne spp.). J Appl Microbiol 83:227–235

    PubMed  CAS  Google Scholar 

  • Davies KG, Laird V, Kerry BR (1991) The motility, development and infection of Meloidogyne incognita encumbered with spores of the obligate hyperparasite Pasteuria penetrans. Rev Nematol 14:611–618

    Google Scholar 

  • Davies KG, Robinson MP, Laird V (1992) Proteins on the surface of spores of Pasteuria penetrans and their involvement in attachment to the cuticle of second-stage juveniles of Meloidogyne incognita. J Invertebr Pathol 59:18–23

    CAS  Google Scholar 

  • Davies KG, Rowe J, Williamson VM (2008) Cuticle variation amongst amphimictic and parthenogenetic populations of nematode (Meloidogyne spp.) as exhibited by a bacterial parasite (Pasteuria penetrans). Int J Parasitol 38:851–859

    PubMed  CAS  Google Scholar 

  • Day FP, Conn C, Crawford E, Stevenson M (2004) Long-term effects of nitrogen fertilization on platn community structure on a coastal barrier island dune chronosequence. J Coast Res 20:722–730

    Google Scholar 

  • De la Peña E, Rodriguez-Echeverria S, Van der Putten WH, Freitas H, Moens M (2006) Mycorrhizal fungi control migratory endoparasitic nematodes in Ammophila arenaria. New Phytopathol 169:829–840

    Google Scholar 

  • De la Peña E, Vandegehuchte M, Bonte D, Moens M (2008) Analysis of the specificity of three root-feeders towards grasses in coastal dunes. Plant Soil 310:113–120

    Google Scholar 

  • de Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Rev Nematol 14:157–164

    Google Scholar 

  • de Rooij-van der Goes PCEM (1995) The role of plant-parasitic nematodes and soil-borne fungi in the decline of Ammophila arenaria (L.) Link. New Phytol 129:661–669

    Google Scholar 

  • de Rooij-van der Goes PCEM, Van der Putten WH, Van Dijk C (1995) Analysis of nematodes and soil-borne fungi from Ammophila arenaria (marram grass) in Dutch coastal foredunes by multivariate techniques. Eur J Plant Pathol 101:149–162

    Google Scholar 

  • Deacon JW, Saxena G (1997) Orientated zoospore attachment and cyst germination in Catenaria anguillulae, a facultative endoparasite of nematodes. Mycol Res 101:513–522

    Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, van Kerckhoven L, Ebert D, de Meester L (2007) Host–parasite “Red Queen” dynamics archived in pond sediment. Nature 450:870–873

    PubMed  CAS  Google Scholar 

  • Duponnois R, Fargette M, Fould S, Thioulouse J, Davies KG (2000) Diversity of the bacterial hyperparasite Pasteuria penetrans in relation to root-knot nematodes (Meloidogyne spp.) control on Acacia holosericea. Nematology 2:435–442

    Google Scholar 

  • Fargette M, Davies KG, Robinson MP, Trudgill DL (1994) Characterization of resistance breaking Meloidogyne incognita-like populations using lectins, monoclonal antibodies and spores of Pasteuria penetrans. Fundam Appl Nematol 17:537–542

    Google Scholar 

  • Fould S, Dieng AL, Davies KG, Normand P, Mateille T (2001) Immunological quantification of the nematode parasitic bacterium Pasteuria penetrans in soil. FEMS Microbiol Ecol 37:187–195

    CAS  Google Scholar 

  • Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol 15:451–462

    Google Scholar 

  • Gandon S, van Zandt PA (1998) Local adaptation and host parasite interactions. Trends Ecol Evol 13:214–216

    PubMed  CAS  Google Scholar 

  • Gandon S, van Baalen M, Jansen VAA (2002) The evolution of parasite resistance, superinfection, and host resistance. Am Nat 159:658–669

    PubMed  Google Scholar 

  • Goralczyk K (1998) Nematodes in coastal dune succession: indicators of soil properties? Appl Soil Ecol 9:465–469

    Google Scholar 

  • Hirsch PR, Atkins SD, Mauchline TH, Morton CO, Davies KG, Kerry BR (2001) Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant Soil 232:21–30

    CAS  Google Scholar 

  • Hochberg ME, van Baalen M (1998) Antagonistic coevolution over productivity gradients. Am Nat 152:620–634

    PubMed  CAS  Google Scholar 

  • Hodgkin J, Kuwabara PE, Corneliussen B (2000) A novel bacterial pathogen, Microbacterium nematophilum induces morphological change in the nematode Caenorhabditis elegans. Curr Biol 10:1615–1618

    PubMed  CAS  Google Scholar 

  • Huiskes AHL (1979) Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Schult.; Calamagrostis arenaria (L.) Roth). J Ecol 67:363–382

    CAS  Google Scholar 

  • Jaffee BA (1992) Population biology and biological control of nematodes. Can J Microbiol 38:359–364

    PubMed  CAS  Google Scholar 

  • Jaffee BA (1993) Density-dependent parasitism in biological control of soil-borne insects, nematodes, fungi and bacteria. Biocontrol Sci Tech 3:235–246

    Google Scholar 

  • Jaffee BA, Strong DR (2005) Strong bottom-up and weak topdown effects in soil: nematode-parasitized insects and nematode-trapping fungi. Soil Biol Biochem 37:1011–1021

    CAS  Google Scholar 

  • Jaffee BA, Strong DR, Muldoon AE (1996) Nematode-trapping fungi of a natural shrubland: tests for food chain involvement. Mycologia 88:554–564

    Google Scholar 

  • Kerry BR (1988) Fungal parasites of cyst nematodes. Agric Ecosyst Environ 24:293–305

    Google Scholar 

  • Kerry BR, Crump DH, Mullen LA (1982) Studies of the cereal cyst nematode Heterodera avenae under continuous cereals, 1975–1978. II. Fungal parasitism of nematode females and eggs. Ann Appl Biol 100:489–499

    Google Scholar 

  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JD (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3:493–494

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581

    PubMed  CAS  Google Scholar 

  • Little TJ, Maun MA (1997) Relationships among plant-parasitic nematodes, mycorrhizal fungi and the dominant vegetation of a sand dune system. Ecoscience 4:67–74

    Google Scholar 

  • Liu XZ, Chen SY (2001) Screening isolates of Hirsutella species for biocontrol of Heterodera glycines. Biocontrol Sci Technol 11:151–160

    Google Scholar 

  • Maun MA (1997) Adaptations of plants to burial in coastal sand dunes. Can J Bot 76:713–738

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Google Scholar 

  • Olff H, Huisman J, van Tooren BF (1993) Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J Ecol 81:693–706

    Google Scholar 

  • Piskiewicz AM, Duyts H, Berg MP, Costa SR, van der Putten WH (2007) Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes. Oecologia 152:505–514

    PubMed  Google Scholar 

  • Piskiewicz AM, Duyts H, van der Putten WH (2008) Multiple species-specific controls of root-feeding nematodes in natural soils. Soil Biol Biochem 40:2729–2735

    CAS  Google Scholar 

  • Piskiewicz AM, Duyts H, van der Putten WH (2009) Soil microorganisms in coastal foredunes control the ectoparasitic root-feeding nematode Tylenchorhynchus ventralis by local interactions. Funct Ecol 23:621–626

    Google Scholar 

  • Rodriguez-Echeverria S, Hol WH, Freitas H, Eason W, Cook R (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44:30–36

    Google Scholar 

  • Seliskar DM (1995) Coastal dune restoration: a strategy for alleviating dieout of Ammophila breviligulata. Restor Ecol 3:54–60

    Google Scholar 

  • Seliskar DM, Huettel RN (1993) Nematode involvement in the die-out of Ammophila breviligulata (Poaceae) on the Mid-Atlantic coastal dunes of the United States. J Coast Res 9:97–103

    Google Scholar 

  • Smith D, Onions AHS (1994) The preservation and maintenance of living fungi. CAB International, Wallingford

    Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes: progress, problems and prospects. CAB International, Wallingford

    Google Scholar 

  • Strong DR (1997) Predator control in terrestrial ecosystems: the underground food-chain of bush lupine. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Padstow, pp 577–601

  • Sulston J, Hodgkin J (1988) Methods. In: Wood EB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, USA, pp 587–606

    Google Scholar 

  • Trudgill DL, Honek A, Li D, van Straalen NM (2005) Thermal time: concepts and utility. Ann Appl Biol 146:1–14

    Google Scholar 

  • Tyler J (1933) Development of root-knot nematodes as affected by temperature. Proc Helminthol Soc Wash 5:49–54

    Google Scholar 

  • van der Putten WH (1990) Establishment of Ammophila arenaria (marram grass) from culms, seeds and rhizomes. J Appl Ecol 27:188–199

    Google Scholar 

  • van der Putten WH, Peters BAM (1997) How soil-borne pathogens may affect plant competition. Ecology 78:1785–1795

    Google Scholar 

  • van der Putten WH, van Dijk C, Troelstra SR (1988) Biotic factors affecting the growth and development of Ammophila arenaria. Oecologia 76:313–320

    Google Scholar 

  • van der Putten WH, van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–55

    Google Scholar 

  • van der Putten WH, Cook R, Costa S, Davies KG, Fargette M, Freitas H, Hol WHG, Kerry BR, Maher N, Mateille T, Moens M, de la Peña E, Piskiewicz AM, Raeymaekers ADW, Rodriguez-Echeverria S, van der Wurff AWG (2005) Nematode interactions in nature: models for sustainable control of nematode pests of crop plants? Adv Agron 89:227–260

    Google Scholar 

  • van der Stoel CD, van der Putten WH, Duyts H (2002) Development of a negative plant-soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization. J Ecol 90:978–988

    Google Scholar 

  • van der Stoel CD, Duyts H, Van der Putten WH (2006) Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass. Oikos 112:651–659

    Google Scholar 

  • Wallen B (1980) Changes in structure and function of Ammophila during primary succession. Oikos 34:227–238

    Google Scholar 

  • Webster R (1997) Regression and functional relations. Eur J Soil Sci 48:557–566

    Google Scholar 

  • Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–38

    Google Scholar 

  • Willis AJ (1965) The influence of mineral nutrients on the growth of Ammophila arenaria. J Ecol 53:735–745

    Google Scholar 

  • Zhan J, Mundt CC, Hoffer ME, McDonald BA (2002) Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J Evol Biol 15:634–647

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Richard Webster, Rothamsted Research, UK, for advice on the statistical analyses. Research was supported by the Marie Curie European Research Training Network Ecotrain (HPRN-CT 2002-00210). This work is part of a PhD thesis by S.R. Costa. Rothamsted Research receives grant-aided support from the Biotechnological and Biological Sciences Research Council of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia R. Costa.

Additional information

Communicated by Matthias Schaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, S.R., Kerry, B.R., Bardgett, R.D. et al. Interactions between nematodes and their microbial enemies in coastal sand dunes. Oecologia 170, 1053–1066 (2012). https://doi.org/10.1007/s00442-012-2359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2359-z

Keywords

Navigation