Skip to main content
Log in

Sensitivity of Daphnia species to phosphorus-deficient diets

  • Population Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The life history of freshwater cladocerans such as Daphnia spp. is strongly affected by their environment. Factors such as temperature, food quantity and even the presence or absence of predators influence growth, reproduction and morphology of individuals. Recently, it has also become clear that the quality of the food can affect various life history traits of Daphnia. More specifically, the effect of the elemental composition of algae, expressed as the C:P ratio, has been studied intensively. Daphnia species differ in their response to differences in the C:P ratio of their food. Until now, it has been unclear whether these species differences are driven by phylogenetic constraints or by adaptation to particular environmental conditions. Here we present laboratory experiments with 12 Daphnia species from three different subgenera originating from a broad range of habitats. We compared somatic growth rates and sensitivity to variation in the nutrient stoichiometry of the food with habitat parameters, taking into account the phylogenetic history of the species. No associations between fitness and habitat parameters were detected. However, we found a trade-off between sensitivity to P-deficient diets and the maximum growth rate on a P-sufficient diet. In several cases, this trade-off helps to explain the association between species distribution and habitat parameters. We observed no correlation of the sensitivity to P limitation with the phylogenetic history of the genus Daphnia. Thus, we conclude that the differential responses among Daphnia species to variation in P content in food were driven mainly by adaptations to their local habitats, and are not constrained by deep evolutionary patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya K, Kyle MAD, Elser JJ (2004) Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol Oceanogr 49:656–665

    CAS  Google Scholar 

  • Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phylogen Evol 50:423–436

    Google Scholar 

  • Becker C, Boersma M (2003) Resource quality effects on life histories of Daphnia. Limnol Oceanogr 48:700–706

    Google Scholar 

  • Benzie JAH (2005) Cladocera: the genus Daphnia (including Daphniopsis). In: Dumont HJF (ed) Guides to the identification of the microinvertebrates of the continental waters of the world, vol 21. Kenobi, Backhuys, Ghent, Leiden

    Google Scholar 

  • Boersma M (1997) Offspring size and parental fitness in Daphnia magna. Evol Ecol 11:439–450

    Article  Google Scholar 

  • Boersma M (2000) The nutritional quality of P-limited algae for Daphnia. Limnol Oceanogr 45:1157–1161

    Article  CAS  Google Scholar 

  • Colbourne JK, Hebert PDN (1996) The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Philos Trans R Soc Lond Ser B Biol Sci 351:349–360

    Article  CAS  Google Scholar 

  • Crease TJ, Lynch M (1991) Ribosomal DNA variation in Daphnia pulex. Mol Biol Evol 8:620–640

    CAS  Google Scholar 

  • De Meester L (1996) Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3:385–399

    Google Scholar 

  • De Meester L, Gomez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol 23:121–135

    Article  Google Scholar 

  • De Meester L et al (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv Mar Freshwater Ecosyst 15:715–725

    Article  Google Scholar 

  • Declerck S, De Meester L (2003) Impact of fish predation on coexisting Daphnia taxa: a partial test of the temporal hybrid superiority hypothesis. Hydrobiologia 500:83–94

    Article  Google Scholar 

  • DeMott WR, Pape BJ (2005) Stoichiometry in an ecological context: testing for links between Daphnia P-content, growth rate and habitat preference. Oecologia 142:20–27

    Article  PubMed  Google Scholar 

  • DeMott WR, Tessier AJ (2002) Stoichiometric constraints vs. algal defenses: testing mechanisms of zooplankton food limitation. Ecology 83:3426–3433

    Article  Google Scholar 

  • DeMott WR, Gulati RD, Van Donk E (2001) Effects of dietary phosphorus deficiency on the abundance, phosphorus balance, and growth of Daphnia cucullata in three hypereutrophic Dutch lakes. Limnol Oceanogr 46:1871–1880

    Article  CAS  Google Scholar 

  • DeMott WR, Pape BJ, Tessier AJ (2004) Patterns and sources of variation in Daphnia P-content in nature. Aquat Ecol 38:433–440

    Article  CAS  Google Scholar 

  • Dzialowski AR, Lennon JT, O’Brien WJ, Smith VH (2003) Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshwater Biol 48:1593–1602

    Article  Google Scholar 

  • Ebert D (1993) The trade-off between offspring size and number in Daphnia magna—the influence of genetic, environmental and maternal effects. Arch Hydrobiol Suppl 90:453–473

    Google Scholar 

  • Elser JJ (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168:25–35

    Article  Google Scholar 

  • Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience 46:674–684

    Article  Google Scholar 

  • Fagan WF, Siemann EH, Denno RF, Mitter C, Huberty A, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  PubMed  Google Scholar 

  • Ferrao-Filho ADS, Tessier AJ, DeMott WR (2007) Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: testing stoichiometric theory and the growth rate hypothesis. Limnol Oceanogr 52:407–415

    Article  CAS  Google Scholar 

  • Gorokhova E, Dowling TE, Weider LJ, Crease TJ, Elser JJ (2002) Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc R Soc Lond Ser B Biol Sci 269:2373–2379

    Article  CAS  Google Scholar 

  • Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biol 38:753–768

    Article  Google Scholar 

  • Hairston NG, Holtmeier CL, Lampert W, Weider LJ, Post DM, Fischer JM, Caceres CE, Fox JA, Gaedke U (2001) Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evol Int J Org Evol 55:2203–2214

    Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hendrixson HA, Sterner RW, Kay AD (2007) Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J Fish Biol 70:121–140

    Article  Google Scholar 

  • Hotový J, Petrusek A (2007) Resting stage density and hatching of two cladoceran species from small ephemeral waters. Fundam Appl Limnol 169:177–187

    Article  Google Scholar 

  • Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005) Toward a stoichiometric framework for evolutionary biology. Oikos 109:6–17

    Article  Google Scholar 

  • Kluttgen B, Dulmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746

    Article  Google Scholar 

  • Kreeger DA, Goulden CE, Kilham SS, Lynn SG, Datta S, Interlandi SJ (1997) Seasonal changes in the biochemistry of lake seston. Freshwater Biol 38:539–554

    Article  CAS  Google Scholar 

  • Lampert W (1987) Feeding and nutrition in Daphnia. In: Peters RH, de Bernardi R (eds) Daphnia. Memorie dell’Istituto Italiano di Idrobiologia, vol 45. Pallanza, pp 143–192

  • Langner CL, Hendrix PF (1982) Evaluation of a persulfate digestion method for particulate nitrogen and phosphorus. Water Res 16:1451–1454

    Article  CAS  Google Scholar 

  • Lynch M (1985) Speciation in the Cladocera. Verh Int Ver Theor Angew Limnol 22:3116–3123

    Google Scholar 

  • Maddison WP, Maddison DR (2006) Mesquite: a modular system for evolutionary analysis, 1.1 edn. http://mesquiteproject.org

  • Midford PE, Garland Jr T, Maddison WP (2005) PDAP package of Mesquite, version 1.07. http://mesquiteproject.org

  • Petrusek A et al (2008) A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr 37:507–519

    Article  Google Scholar 

  • Petrusek A, Tollrian R, Schwenk K, Haas A, Laforsch C (2009) A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. Proc Natl Acad Sci USA 106:2248–2252

    Article  CAS  PubMed  Google Scholar 

  • Pijanowska J (1991) Seasonal changes in morphology of Daphnia cucullata SARS. Arch Hydrobiol 121:79–86

    Google Scholar 

  • Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82:1260–1269

    Article  Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond Ser B Biol Sci 348:405–421

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometr Bull 2:110–114

    Article  CAS  PubMed  Google Scholar 

  • Schulz KL, Sterner RW (1999) Phytoplankton phosphorus limitation and food quality for Bosmina. Limnol Oceanogr 44:1549–1556

    Article  CAS  Google Scholar 

  • Schwenk K, Posada D, Herbert PDN (2000) Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. Proc R Soc Lond B Biol Sci 267:1833–1842

    Article  CAS  Google Scholar 

  • Seda J, Petrusek A, Macháček J, Šmilauer P (2007) Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. J Plankton Res 29:619–628

    Article  Google Scholar 

  • Seidendorf B, Boersma M, Schwenk K (2007) Evolutionary stoichiometry: the role of food quality for clonal differentiation and hybrid maintenance in a Daphnia species complex. Limnol Oceanogr 52:385–394

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol 25:1–29

    Article  Google Scholar 

  • Tessier AJ, Woodruff P (2002a) Cryptic trophic cascade along a gradient of lake size. Ecology 83:1263–1270

    Article  Google Scholar 

  • Tessier AJ, Woodruff P (2002b) Trading of the ability to exploit rich versus poor food quality. Ecol Lett 5:685–692

    Article  Google Scholar 

  • Tessier AJ, Leibold MA, Tsao J (2000) A fundamental trade-off in resource exploitation by Daphnia and consequences to plankton communities. Ecology 81:826–841

    Google Scholar 

  • Weider LJ, KL G, Kyle M, Elser JJ (2004) Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol Oceanogr 49:1417–1423

    Article  CAS  Google Scholar 

  • Zehnder A, Gorham PR (1960) Factors influencing the growth of Microcystis aeruginosa Kutz emend Elenkin. Can J Microbiol 6:645–648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dieter Albrecht (MPI Plön, Germany) for C:P-measurements of Scenedesmus obliquus cultures. This study was funded by the German Research foundation (DFG), SCHW 830/3 and BO 1488/5, the LOEWE Biodiversity and Climate Research Centre (BiK-F) and the Czech Ministry of Education (MSM0021620828). We acknowledge the generous support of Schärfe Systems (Casy particle counter). We also thank one anonymous reviewer and Bill DeMott whose comments significantly improved the quality of the paper. The experiments we present here comply with the current laws in Germany where all experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Seidendorf.

Additional information

Communicated by Carla Caceres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidendorf, B., Meier, N., Petrusek, A. et al. Sensitivity of Daphnia species to phosphorus-deficient diets. Oecologia 162, 349–357 (2010). https://doi.org/10.1007/s00442-009-1452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1452-4

Keywords

Navigation