Skip to main content

Advertisement

Log in

Improving the osteogenic efficacy of BMP2 with mechano growth factor by regulating the signaling events in BMP pathway

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Local application of bone morphogenetic protein 2 (BMP2) is known to promote large bone defect healing and BMP2-initiated bone regeneration could be enhanced by an additional mechanical stimulation. The C-terminal 24-a.a. peptide of mechano growth factor (MGF24E), a mechanical-sensitive molecule, has been demonstrated to promote bone healing. Here, we propose a hypothesis that MGF24E could also improve the osteogenic efficacy of BMP2 by regulating the signaling events in the BMP pathway. To confirm the hypothesis, the potentials of MGF24E, BMP2 and BMP2/MGF24E combination treatments on the phosphorylation of Smad 1/5/8, the downstream osteogenesis-related gene expression and osteoblasts mineralization, are investigated with or without the blocking of Smad 5 siRNA. Furthermore, 15-mm rabbit radial bone defects were healed with the cytokine treatments and then evaluated by radiographic examination, histological assessment and immunohistochemical analysis. MGF24E could enhance the BMP2-induced Smad signaling pathway by upregulating the p-Smad protein expression and the downstream osteogenic gene expression. An amount of 5 nM BMP2 in a sub-25 nM concentration of MGF24E medium achieved a higher expression for ALP mRNA and a greater calcium mineral content compared with BMP2 alone. Nevertheless, the inhibition of the MGF24E-regulated BMP pathway could block osteogenesis induced by the dual treatment. In vivo, MGF24E treatment upregulated the endogenous BMP2 expression and the addition of MGF24E into the BMP2 treatment remarkably enhanced the bone mineral density (BMD), the radiographic scores and the histological restoration of the regenerated tissue against BMP2 treatment, suggesting a new strategy for BMP2 in bone defect healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beck A, Woods S, Lansdowne JL, Arens D (2013) The effects of multiple high-resolution peripheral quantitative computed tomography scans on bone healing in a rabbit radial bone defect model. Bone 56:312–319

    Article  PubMed  Google Scholar 

  • Bischoff DS, Sakamoto T, Ishida K, Makhijani NS, Gruber HE, Yamaguchi DT (2011) CXC receptor knockout mice: characterization of skeletal features and membranous bone healing in the adult mouse. Bone 48:267–274

    Article  CAS  PubMed  Google Scholar 

  • Cai K, Hou Y, Li J, Chen X, Hu Y, Luo Z, Ding X, Xu D, Lai M (2013) Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomedicine 8:3619–3630

    Article  PubMed Central  PubMed  Google Scholar 

  • Carpenter V, Matthews K, Devlin G, Stuart S, Jensen J, Conaglen J, Jeanplong F, Goldspink P, Yang S, Goldspink G et al (2008) Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ 17:33–39

    Article  PubMed  Google Scholar 

  • Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, Liu P, Li Y, Lin F, Wang Y (2011) Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop 35:1099–1106

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng M, Wang Y, Zhang B, Liu P, Xiao H, Zhao J (2012) New proangiogenic activity on vascular endothelial cells for C-terminal mechano growth factor. Acta Biochim Biophys Sin 44:316–322

    Article  CAS  PubMed  Google Scholar 

  • Dłużniewska J, Sarnowska A, Beręsewicz M, Johnson I, Srai SKS, Ramesh B, Goldspink G, Górecki DC, Zabłocka B (2005) A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1 Ec (MGF) in brain ischemia. FASEB J 13:1896–1898

  • Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77:626–631

    Article  PubMed  Google Scholar 

  • Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194(Pt 3):323–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guilak F, Butler DL, Goldstein SA, Baaijens FP (2014) Biomechanics and mechanobiology in functional tissue engineering. J Biomech 9:1933–1940

    Article  Google Scholar 

  • Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Holfeld J, Schaden W, Orgill D, Ogawa R (2013) Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med 19:555–564

    Article  PubMed  Google Scholar 

  • Kanakaris NK, Giannoudis PV (2008) Clinical applications of bone morphogenetic proteins: current evidence. J Surg Orthop Adv 17:133–146

    PubMed  Google Scholar 

  • Kopf J, Petersen A, Duda GN, Knaus P (2012) BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biol 10:37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauzon MA, Bergeron E, Marcos B, Faucheux N (2012) Bone repair: new developments in growth factor delivery systems and their mathematical modeling. J Control Release 162:502–520

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao Z, Song J, Feng Y, Wang Y, Li X, Liu Y, Yang P (2009) Cyclic force upregulates mechano-growth factor and elevates cell proliferation in 3D cultured skeletal myoblasts. Arch Biochem Biophys 490:171–176

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Tzeng ST, Keorochana G, Lee KB, Johnson JS, Morishita Y, Murray SS, Wang JC (2011) Enhancement of recombinant human BMP-7 bone formation with bmp binding peptide in a rodent femoral defect model. J Orthop Res 29:753–759

    Article  CAS  PubMed  Google Scholar 

  • Mai Z, Peng Z, Wu S, Zhang J, Chen L, Liang H, Bai D, Yan G, Ai H (2013) Single bout short duration fluid shear stress induces osteogenic differentiation of MC3T3-E1 cells via integrin beta1 and BMP2 signaling cross-talk. PLoS ONE 8:e61600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olesen JL (2006) Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon. J Appl Physiol 101:183–188

    Article  CAS  PubMed  Google Scholar 

  • Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG (2009) Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 15:208–216

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Micevych P, Handforth A (2009) C-terminal mechano growth factor protects dopamine neurons: a novel peptide that induces heme oxygenase-1. Exp Neurol 220:255–266

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Ogi J, Schultz J, Handforth A (2011) C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase Cϵ/Nrf2 pathway. J Neurosci Res 89:394–405

    Article  CAS  PubMed  Google Scholar 

  • Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S (2008) Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 41:1095–1103

    Article  PubMed Central  PubMed  Google Scholar 

  • Rath B, Nam J, Deschner J, Schaumburger J, Tingart M, Grassel S, Grifka J, Agarwal S (2011) Biomechanical forces exert anabolic effects on osteoblasts by activation of SMAD 1/5/8 through type 1 BMP receptor. Biorheology 48:37–48

    CAS  PubMed  Google Scholar 

  • Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering–Part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng B 19:327–352

    Article  CAS  Google Scholar 

  • Schwarz C, Wulsten D, Ellinghaus A, Lienau J, Willie BM, Duda GN (2013) Mechanical load modulates the stimulatory effect of BMP2 in a Rat nonunion model. Tissue Eng A 19:247–254

    Article  CAS  Google Scholar 

  • Tang L, Xian C, Wang Y (2006) The MGF expression of osteoblasts in response to mechanical overload. Arch Oral Biol 51:1080–1085

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38:1424–1429

    Article  CAS  PubMed  Google Scholar 

  • Visser R, Arrabal PM, Becerra J, Rinas U, Cifuentes M (2009) The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials 30:2032–2037

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX, Jiang S, Mu TW, Qin JJ, Chen SY, Jin D (2010) Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized beta-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31:9452–9461

    Article  CAS  PubMed  Google Scholar 

  • Woo EJ (2012) Recombinant human bone morphogenetic protein-2: adverse events reported to the manufacturer and user facility device experience database. Spine J 12:894–899

    Article  PubMed  Google Scholar 

  • Xin J, Wang Y, Wang Z, Lin F (2014) Functional and transcriptomic analysis of the regulation of osteoblasts by mechano-growth factor E peptide. Biotechnol Appl Biochem 61:193–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wu Y, Jiang Z, Jiang L, Fang B (2012) Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling. Int J Mol Med 29:1083–1089

    CAS  PubMed  Google Scholar 

  • Zhang P, Wu Y, Dai Q, Fang B, Jiang L (2013) p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain. Mol Cell Biochem 378:19–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Key Program of NSFC (No.11032012) and the Youth Foundation of NSFC (No.31400827). The authors are grateful to Dr. Rui Cao, Dr. Yongfei Wang and Dr. Taibang Chen (Research Institute of Surgery, Chongqing) for assistance with surgery, to Drs. Qian Liu and Jinhua Chen (Department of Radiology, Daping Hospital, Chongqing) for assistance with radiology and to Drs. Qiang Ma and Li Ling (Department of Pathology, Daping Hospital, Chongqing) for assistance with histology and immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanliang Wang, Jianhua Zhao or Jianzhong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M., Liu, P., Xiao, H. et al. Improving the osteogenic efficacy of BMP2 with mechano growth factor by regulating the signaling events in BMP pathway. Cell Tissue Res 361, 723–731 (2015). https://doi.org/10.1007/s00441-015-2154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2154-3

Keywords

Navigation