Skip to main content

Advertisement

Log in

Transplantation of reconstructed human skin on nude mice: a model system to study expression of human tenascin-X and elastic fiber components

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tenascin-X is a large extracellular matrix protein that is widely expressed in connective tissues during development and in the adult. Genetically determined deficiency of tenascin-X causes the connective tissue disease Ehlers–Danlos syndrome. These patients show reduced collagen density and fragmentation of elastic fibers in their skin. In vitro studies on the role of tenascin-X in elastic fiber biology are hampered because monolayers of fibroblasts do not deposit tenascin-X and elastic fibers into the extracellular matrix. Here, we applied an organotypic culture model of fibroblasts and keratinocytes to address this issue. We investigated the deposition of tenascin-X and elastin into skin-equivalent in vitro and also in vivo after transplantation onto immunodeficient mice. Whereas tenascin-C and fibrillin-1 were readily expressed in the skin-equivalents before transplantation, tenascin-X and elastin were not present. Three weeks post-grafting, a network of elastin was observed that coincided with the appearance of tenascin-X. At the ultrastructural level, microfibrils were observed, some of which were associated with elastin. Transplanted skin-equivalents containing tenascin-X-deficient fibroblasts showed deposition of immunoreactive elastin in similar quantities and distribution as those containing control fibroblasts. This suggests that tenascin-X is important for the stability and maintenance of established elastin fibers, rather than for the initial phase of elastogenesis. Thus, the transplantation of reconstructed skin on nude mice allows the study of tenascin-X and elastin expression and could be used as a model system to study the potential role of tenascin-X in matrix assembly and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA (2001) Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol 20:463–473

    Article  CAS  PubMed  Google Scholar 

  • Burch GH, Bedolli MA, McDonough S, Rosenthal SM, Bristow J (1995) Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev Dyn 203:491–504

    CAS  PubMed  Google Scholar 

  • Christiano AM, Uitto J (1994) Molecular pathology of the elastic fibers. J Invest Dermatol 103:53S–57S

    Article  CAS  PubMed  Google Scholar 

  • Debelle L, Tamburro AM (1999) Elastin: molecular description and function. Int J Biochem Cell Biol 31:261–272

    Article  CAS  PubMed  Google Scholar 

  • Deckner M, Lindholm T, Cullheim S, Risling M (2000) Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system. Exp Neurol 166:350–362

    Article  CAS  PubMed  Google Scholar 

  • Duplan-Perrat F, Damour O, Montrocher C, Peyrol S, Grenier G, Jacob MP, Braye F (2000) Keratinocytes influence the maturation and organization of the elastin network in a skin equivalent. J Invest Dermatol 114:365–370

    Article  CAS  PubMed  Google Scholar 

  • Fleischmajer R, MacDonald ED, Contard P, Perlish JS (1993) Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin. J Histochem Cytochem 41:1359–1366

    Google Scholar 

  • Geffrotin C, Garrido JJ, Tremet L, Vaiman M (1995) Distinct tissue distribution in pigs of tenascin-X and tenascin-C transcripts. Eur J Biochem 231:83–92

    CAS  PubMed  Google Scholar 

  • Geffrotin C, Tricaud Y, Crechet F, Castelli M, Lefaix JL, Vaiman M (1998) Unlike tenascin-X, tenascin-C is highly up-regulated in pig cutaneous and underlying muscle tissue developing fibrosis after necrosis induced by very high-dose gamma radiation. Radiat Res 149:472–481

    CAS  PubMed  Google Scholar 

  • Geffrotin C, Horak V, Crechet F, Tricaud Y, Lethias C, Vincent-Naulleau S, Vielh P (2000) Opposite regulation of tenascin-C and tenascin-X in MeLiM swine heritable cutaneous malignant melanoma. Biochim Biophys Acta 1524:196–202

    CAS  PubMed  Google Scholar 

  • Greenlee TK Jr, Ross R, Hartman JL (1966) The fine structure of elastic fibers. J Cell Biol 30:59–71

    Article  PubMed  Google Scholar 

  • Guerret S, Govignon E, Hartmann DJ, Ronfard V (2003) Long-term remodeling of a bilayered living human skin equivalent (Apligraf) grafted onto nude mice: immunolocalization of human cells and characterization of extracellular matrix. Wound Repair Regen 11:35–45

    Article  PubMed  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    CAS  PubMed  Google Scholar 

  • Kozel BA, Ciliberto CH, Mecham RP (2004) Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol 23:23–34

    Article  CAS  PubMed  Google Scholar 

  • Latijnhouwers M, Bergers M, Ponec M, Dijkman H, Andriessen M, Schalkwijk J (1997) Human epidermal keratinocytes are a source of tenascin-C during wound healing. J Invest Dermatol 108:776–783

    Article  CAS  PubMed  Google Scholar 

  • Lethias C, Descollonges Y, Boutillon MM, Garrone R (1996) Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol 15:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mao JR, Bristow J (2001) The Ehlers–Danlos syndrome: on beyond collagens. J Clin Invest 107:1063–1069

    CAS  PubMed  Google Scholar 

  • Mao JR, Taylor G, Dean WB, Wagner DR, Afzal V, Lotz JC, Rubin EM, Bristow J (2002) Tenascin-X deficiency mimics Ehlers–Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 30:421–425

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Saga Y, Ikemura T, Sakakura T, Chiquet ER (1994) The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J Cell Biol 125:483–493

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Takayama N, Ohnishi J, Ohnishi E, Shirayoshi Y, Nakatsuji N, Ariga H (2001) Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes Cells 6:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Mecham RP (1991) Elastin synthesis and fiber assembly. Ann N Y Acad Sci 624:137–146

    CAS  PubMed  Google Scholar 

  • Milewicz DM, Urban Z, Boyd C (2000) Genetic disorders of the elastic fiber system. Matrix Biol 19:471–480

    Article  CAS  PubMed  Google Scholar 

  • Minamitani T, Ariga H, Matsumoto K (2002) Adhesive defect in extracellular matrix tenascin-X-null fibroblasts: a possible mechanism of tumor invasion. Biol Pharm Bull 25:1472–1475

    Article  CAS  PubMed  Google Scholar 

  • Murphy GaRJJ (2002) Extracellular matrix degradation. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Molecular, genetic, and medical aspects. Wiley-Liss, New York, pp 343–384

    Google Scholar 

  • Partridge SM (1969) Elastin, biosynthesis and structure. Gerontologia 15:85–100

    CAS  PubMed  Google Scholar 

  • Pasquali-Ronchetti I, Baccarani-Contri M (1997) Elastic fiber during development and aging. Microsc Res Tech 38:428–435

    Article  CAS  PubMed  Google Scholar 

  • Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, Mommaas AM (1997) The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol 109:348–355

    Article  CAS  PubMed  Google Scholar 

  • Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, Germain L (2002) Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation 73:1751–1757

    Article  PubMed  Google Scholar 

  • Raghunath M, Bachi T, Meuli M, Altermatt S, Gobet R, Bruckner-Tuderman L, Steinmann B (1996) Fibrillin and elastin expression in skin regenerating from cultured keratinocyte autografts: morphogenesis of microfibrils begins at the dermo-epidermal junction and precedes elastic fiber formation. J Invest Dermatol 106:1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F (2000) Pathophysiology of the microfibril/elastic fiber system: introduction. Matrix Biol 19:455–456

    Article  CAS  PubMed  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  CAS  PubMed  Google Scholar 

  • Rosenbloom J (1984) Elastin: relation of protein and gene structure to disease. Lab Invest 51:605–623

    CAS  PubMed  Google Scholar 

  • Rosenbloom J, Abrams WR (2002) Elastin and the microfibrillar apparatus. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Molecular, genetic, and medical aspects. Wiley-Liss, New York, pp 249–269

    Google Scholar 

  • Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Furukawa Y, Chiquet ER, Nakamura M, Kitagawa S, Ikemura T, Matsumoto K (1996) Tenascin-X expression in tumor cells and fibroblasts: glucocorticoids as negative regulators in fibroblasts. J Cell Sci 109:2069–2077

    CAS  PubMed  Google Scholar 

  • Schalkwijk J, Zweers MC, Steijlen PM, Dean WB, Taylor G, Van Vlijmen IM, Haren B van, Miller WL, Bristow J (2001) A recessive form of the Ehlers–Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 345:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Schwartz E, Fleischmajer R (1986) Association of elastin with oxytalan fibers of the dermis and with extracellular microfibrils of cultured skin fibroblasts. J Histochem Cytochem 34:1063–1068

    CAS  PubMed  Google Scholar 

  • Smola H, Thiekotter G, Fusenig NE (1993) Mutual induction of growth factor gene expression by epidermal–dermal cell interaction. J Cell Biol 122:417–429

    Article  CAS  PubMed  Google Scholar 

  • Toselli P, Salcedo LL, Oliver P, Franzblau C (1981) Formation of elastic fibers and elastin in rabbit aortic smooth muscle cell cultures. Connect Tissue Res 8:231–239

    CAS  PubMed  Google Scholar 

  • Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863

    Article  CAS  PubMed  Google Scholar 

  • Zweers MC, Vlijmen-Willems IM, Van Kuppevelt TH, Mecham RP, Steijlen PM, Bristow J, Schalkwijk J (2004) Deficiency of tenascin-X causes abnormalities in dermal elastic fiber morphology. J Invest Dermatol 122:885–891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Geert Poelen for his excellent assistance with the animal experiments and Theo Hafmans for technical assistance. We are grateful to Dr. Paul Jap for fruitful discussions and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manon C. Zweers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweers, M.C., Schalkwijk, J., van Kuppevelt, T.H. et al. Transplantation of reconstructed human skin on nude mice: a model system to study expression of human tenascin-X and elastic fiber components. Cell Tissue Res 319, 279–287 (2005). https://doi.org/10.1007/s00441-004-1011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-1011-6

Keywords

Navigation