Skip to main content

Advertisement

Log in

Polarized endocytosis and transcytosis in the hypothalamic tanycytes of the rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Four types of tanycytes can be distinguished in the rat hypothalamus: α1 and α2 tanycytes establish an anatomical link between the ventricular cerebrospinal fluid (CSF) and the arcuate nucleus, whereas β1 and β2 tanycytes establish a link between CSF and portal blood. Endocytosis and transcytosis in these cells have been investigated by (1) immunocytochemistry with antibodies against molecular markers of the endocytotic and transcytotic pathways; (2) the administration of wheat germ agglutinin (WGA) into the ventricular or subarachnoidal CSF and following its internalisation by and its routing through tanycytes. The four populations of tanycytes show marked differences concerning the expression and subcellular location of proteins involved in endocytosis and transcytosis, such as clathrin, caveolin-1, Rab4 and ARF6. Thus, β1,2 tanycytes express caveolin-1 at the ventricular cell pole and at their terminals contacting the portal capillaries, whereas α1,2 tanycytes do not, suggesting that caveolae-dependant endocytosis does not occur in the latter and that, in β1,2 tanycytes, it may occur at both cell poles. In β1,2 tanycytes, clathrin is only expressed at the ventricular cell pole indicating that clathrin-dependant endocytosis operates for compounds present in the ventricular CSF and not for those exposed to the terminals. This agrees with the property of β1,2 tanycytes of internalising WGA through the ventricular cell pole but not through the terminals. The subcellular distribution in β1,2 tanycytes of WGA and of the proteins clathrin and Rab4 indicates that part of the internalised WGA follows the degradative pathway and part is sorted to a transcytotic pathway and that the transcytotic and the secretory pathways might intersect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–E
Fig. 2A–H
Fig. 3A–E
Fig. 4A–D
Fig. 5A–C
Fig. 6A, B
Fig. 7A–C

Similar content being viewed by others

References

  • Akmayev IG, Fidelina OV (1976) Morphological aspects of the hypothalamic-hypophyseal system. VI. The tanycytes: their relation to the sexual differentiation of the hypothalamus. An enzyme-histochemical study. Cell Tissue Res 173:407–416

    CAS  PubMed  Google Scholar 

  • Akmayev IG, Fidelina OV (1981) Tanycytes and their relation to the hypophyseal gonadotrophic function. Brain Res 210:253–260

    CAS  PubMed  Google Scholar 

  • Akmayev IG, Fidelina OV, Kavolova ZA, Popov AP, Schitkova TA (1973) Morphological aspects of the hypothalamic-hypophyseal system. IV. Medial basal hypothalamus. An experimental morphological study. Z Zellforsch 137:493–512

    Google Scholar 

  • Bjelke B, Fuxe K (1993) Intraventricular β-endorphin accumulates in DARPP-32 immunoreactive tanycytes. Neuroreport 5:265–268

    CAS  PubMed  Google Scholar 

  • Blázquez JL, Guerra M, Pastor F, Peruzzo B, Amat P, Rodríguez EM (2002) Antibodies obtained by xenotransplantation of organ-cultured median eminence specifically recognize hypothalamic tanycytes. Cell Tissue Res 308:241–253

    Article  CAS  PubMed  Google Scholar 

  • Brightman MW, Prescott L, Reese TS (1975) Intercellular junctions of special ependyma. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-endocrine interaction. II. The ventricular system in neuroendocrine mechanisms. Karger, Basel, pp 146–165

  • Broadwell RD, Balin BJ, Cataldo AM (1987) Fine structure and cytochemistry of the mammalian median eminence. In: Gross PM (ed) Circumventricular organs and body fluids, vol II. CRC, Boca Raton, pp 61–85

  • Cardona-Gómez GP, Chowen JA, García Segura LM (2000) Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. J Neurobiol 43:269–281

    Article  PubMed  Google Scholar 

  • Diano S, Naftolin F, Horvath TL (1998) Kainate glutamate receptors (GluR5-7) in the rat arcuate nucleus: relationship to tanycytes, astrocytes, neurons and gonadal steroid receptors. J Neuroendocrinol 10:239–247

    CAS  PubMed  Google Scholar 

  • Dueñas M, Luquín S, Chowen JA, Torres-Alemán I, Naftolin F, García Segura LM (1994) Gonadal hormone regulation of insulin-like growth factor-I-like immunoreactivity in hypothalamic astroglia of developing and adult rats. Neuroendocrinology 59:528–538

    PubMed  Google Scholar 

  • Everitt BJ, Meister B, Hökfelt T, Melander T, Terenius L, Rökaeus A, Theodorsson E, Dockray G, Edwardson J, Cuello C, Elde R, Goldstein M, Hemmings H, Ouimet C, Walaas I, Greengard P, Vale W, Weber E, Wu JY, Chang KJ (1986) The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res Rev 11:97–155

    CAS  Google Scholar 

  • Eyigor O, Jennes L (1998) Identification of kainate-preferring glutamate receptor subunit GluR7 mRNA and protein in the rat median eminence. Brain Res 814:231–235

    CAS  PubMed  Google Scholar 

  • Fekete C, Mihaly E, Herscovici S, Salas J, Tu H, Larsen PR, Lechan RM (2000) DARPP-32 and CREB are present in type 2 iodothyronine deiodinase-producing tanycytes: implications for the regulation of type 2 deiodinase activity. Brain Res 862:154–161

    CAS  PubMed  Google Scholar 

  • Fernández-Galaz MC, Torres Alemán I, García-Segura LM (1996) Endocrine-dependent accumulation of IGF-I by hypothalamic glia. Neuroreport 8:373–377

    PubMed  Google Scholar 

  • Fernández-Galaz MC, Morschl E, Chowen JA, Torres Alemán I, Naftolin F, García-Segura LM (1997) Role of astroglia and insulin-like growth factor-I in gonadal hormone-dependent synaptic plasticity. Brain Res Bull 44:525–531

    Article  PubMed  Google Scholar 

  • Flament-Durand J, Brion JP (1985) Tanycytes: morphology and function: a review. Int Rev Cytol 96:121–155

    CAS  PubMed  Google Scholar 

  • García-Segura LM, Pérez J, Pons S, Rejas MT, Torres-Alemán I (1991) Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res 500:167–174

    Article  Google Scholar 

  • García-Segura LM, Naftolin F, Hutchinson JB, Azcoitia I, Chowen JA (1999) Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. J Neurobiol 40:574–584

    Article  PubMed  Google Scholar 

  • Gibson MJ, Ingraham L, Dobrjansky A (2000) Soluble factors guide gonadotropin-releasing hormone axonal targeting to the median eminence. Endocrinology 141:3065–3071

    CAS  PubMed  Google Scholar 

  • Herrera H, Rodríguez EM (1990) Secretory glycoproteins of the rat subcommissural organ are N-linked complex-type glycoproteins. Demonstration by combined use of lectins and specific glycosidases, and by the administration of Tunicamycin. Histochemistry 93:607–615

    CAS  PubMed  Google Scholar 

  • Hiney JK, Srivastava V, Nyberg CL, Ojeda SR, Les Dees W (1996) Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 137:3717–3728

    Article  CAS  PubMed  Google Scholar 

  • Horstmann E (1954) Die Faserglia des Selachiergehirns. Z Zellforsch 39:588–617

    CAS  PubMed  Google Scholar 

  • Hökfelt T (1973) Possible site of action of in the hypothalamic pituitary control. Acta Physiol Scand 89:606–608

    PubMed  Google Scholar 

  • Hökfelt T, Foster G, Schultzberg M, Meister B, Schalling M, Goldstein M, Hemmings HC Jr, Ouimet C, Greengard P (1988) DARPP-32 as a marker for D-1 dopaminoceptive cells in the rat brain: prenatal development and presence in glial elements (tanycytes) in the basal hypothalamus. Adv Exp Med Biol 235:65–82

    PubMed  Google Scholar 

  • Kendall JW, Jacobs JJ, Kramer RM (1972) Studies on the transport of hormones from the cerebrospinal fluid to hypothalamus and pituitary. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Karger, Basel, pp 342–349

    Google Scholar 

  • King JC, Rubin BS (1994) Dynamic changes in LHRH neurovascular terminals with various endocrine conditions in adults. Horm Behav 28:349–356

    Article  CAS  PubMed  Google Scholar 

  • Knigge KM, Silverman AJ (1972) Transport capacity of the median eminence. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Karger, Basel, pp 350–363

    Google Scholar 

  • Kozlowski GP, Coates PW (1985) Ependymoneuronal spezialisation between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res 242:301–311

    CAS  PubMed  Google Scholar 

  • Krisch B, Leonhardt H, Buchheim W (1978) The functional and structural border of the neurohemal region of the median eminence. Cell Tissue Res 192:327–339

    CAS  PubMed  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1983) The meningeal compartments of the median eminence and the cortex. Cell Tissue Res 228:597–640

    CAS  PubMed  Google Scholar 

  • Lerant A, Freeman ME (1998) Ovarian steroids differentially regulate the expression of PRL-R in neuroendocrine dopaminergic neuron populations: a double label confocal micoscopic study. Brain Res 802:141–154

    CAS  PubMed  Google Scholar 

  • Martini L, Motta M, Piva F, Zanisi M (1997) LHRF, LHRH, GnRH: what controls the secretion of this hormone? Mol Psychiatry 2:373–376

    CAS  PubMed  Google Scholar 

  • Matsuo A, Tooyama I, Isobe S, Oomura Y, Akiguchi I, Hanai K, Kimura J, Kimura H (1994) Immunohistochemical localization in the rat brain of an epitope corresponding to the fibroblast growth factor receptor-1. Neuroscience 60:49–66

    CAS  PubMed  Google Scholar 

  • McQueen JK (1994) Glial cells and neuroendocrine function. J Endocrinol 143:411–415

    CAS  PubMed  Google Scholar 

  • Meister B, Hökfelt T, Tsuruo Y, Hemmings H, Ouimet C, Greengard P, Goldstein M (1988) DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein in tanycytes of the mediobasal hypothalamus: distribution and relation to dopamine and luteinizing hormone-releasing hormone neurons and other glial elements. Neuroscience 27:607–622

    CAS  PubMed  Google Scholar 

  • Melcangi RC, Galbiati M, Messi E, Piva F, Martini L, Motta M (1995) Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1-1: is transforming growth factor-β the principle involved? Endocrinology 136:679–686

    CAS  PubMed  Google Scholar 

  • Miaczynska M, Zerial M (2002) Mosaic organization of the endocytic pathway. Exp Cell Res 272:8–14

    Article  CAS  PubMed  Google Scholar 

  • Mostov KE, Verges M, Altschuler Y (2000) Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol 12:483–490

    Google Scholar 

  • Nichols BJ, Lippincott-Schwartz J (2001) Endocytosis without clathrin coats. Trends Cell Biol 11:406–412

    CAS  PubMed  Google Scholar 

  • Ojeda SR, Ma YJ (1998) Epidermal growth factor tyrosine kinase receptors and the neuroendocrine control of mammalian puberty. Mol Cell Endocrinol 140:101–106

    CAS  PubMed  Google Scholar 

  • Ojeda SR, Urbanski HF, Costa ME, Hill DF, Moholt-Siebert M (1990) Involvement of transforming growth factor α in the release of luteinizing-hormone releasing hormone from the developing female hypothalamus. Proc Natl Acad Sci USA 87:9698–9702

    CAS  PubMed  Google Scholar 

  • Ojeda SR, Dissen GA, Junier MP (1992) Neurotrophic factors and female sexual development. Front Neuroendocrinol 13:120–162

    CAS  PubMed  Google Scholar 

  • Ojeda SR, Ma YJ, Rage F (1997) The transforming growth factor α gene family is involved in the neuroendocrine control of mammalian puberty. Mol Psychiatry 2:355–358

    CAS  PubMed  Google Scholar 

  • Orzech E, Cohen S, Weiss A, Aroeti B (1999) Interactions between the exocytic and the endocytic pathways in polarized Madin Darby canine kidney cells. J Biol Chem 274:2201–2215

    Article  CAS  PubMed  Google Scholar 

  • Peruzzo B, Rodríguez EM (1989) Light and electron microscopical demonstration of concanavalin A and wheat-germ agglutinin binding sites by use of antibodies against the lectin or its label (peroxidase). Histochemistry 92:505–513

    CAS  PubMed  Google Scholar 

  • Peruzzo B, Pastor FE, Blázquez JL, Schöbitz K, Peláez B, Amat P, Rodríguez EM (2000) A second look at the barriers of the medial basal hypothalamus. Exp Brain Res 132:10–26

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim C (1978) Transport function of hypothalamic tanycyte ependyma: how good is the evidence? Neuroscience 3:277–283

    Article  CAS  PubMed  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94:809–819

    Article  CAS  PubMed  Google Scholar 

  • Prevot V, Cornea A, Mungenast A, Smiley G, Ojeda SR (2003) Activation of erbB-1 signalling in tanycytes of the median eminence stimulates transforming growth factor β1 release via prostaglandin E2 production and induces cell plasticity. J Neurosci 23:10622–10632

    CAS  PubMed  Google Scholar 

  • Ramoino P, Fronte P, Fato M, Beltrame F, Robello M, Diaspro A (2001) Fluid phase and receptor-mediated endocytosis in Paramecium primaurelia by confocal laser scanning microscopy. Eur Biophys J 30:305–312

    Article  CAS  PubMed  Google Scholar 

  • Réthelyi M (1984) Diffusional barrier around the hypothalamic arcuate nucleus in the rat. Brain Res 307:355–358

    Article  PubMed  Google Scholar 

  • Rodríguez EM (1969) Fixation of the central nervous system by perfusion of the cerebral ventricles with a threefold aldehyde mixture. Brain Res 15:395–412

    PubMed  Google Scholar 

  • Rodríguez EM (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 71:407–443

    PubMed  Google Scholar 

  • Rodríguez EM, González CB, Delannoy L (1979) Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat. Cell Tissue Res 201:377–408

    PubMed  Google Scholar 

  • Rodríguez EM, Peña P, Rodríguez S, Aguado LI, Hein S (1982) Evidence for the participation of the CSF and periventricular structures in certain neuroendocrine mechanisms. Front Horm Res 9:142–158

    Google Scholar 

  • Rojas R, Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3:1–12

    Article  Google Scholar 

  • Scott DE, Dudley GK, Knigge KM (1974) The ventricular system in neuroendocrine mechanisms. II. In vivo monoamine transport by ependyma of the median eminence. Cell Tissue Res 154:1–16

    CAS  PubMed  Google Scholar 

  • Seddiki T, Delpal S, Aubourg A, Durand G, Ollivier-Bousquet M (2002) Endocytic prolactin routes to the secretory pathway in lactating mammary epithelial cells. Biol Cell 94:173–185

    Article  CAS  PubMed  Google Scholar 

  • Sternberger LA, Hardy PA, Cuculis JJ, Meyer HJ (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    CAS  PubMed  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    CAS  PubMed  Google Scholar 

  • Van der Goot FG, Gruenberg J (2002) Oiling the wheels of the endocytic pathway. Trends Cell Biol 12:296–299

    Article  PubMed  Google Scholar 

  • Weindl A, Joynt RJ (1972) The median eminence as a circumventricular organ. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Karger, Basel, pp 280–297

    Google Scholar 

  • Wittkowski W (1998) Tanycytes and pituicytes: morphological and functional aspects of neuroglial interaction. Microsc Res Tech 41:29–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Genaro Alvial, Intituto de Histología y Patología, Universidad Austral de Chile, Valdivia, Chile, for valuable technical cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Martín Rodríguez.

Additional information

Financial support was provided by grants 01/1050, from FIS, Spain (to J.L.B.) and 1030265, from FONDECYT, Chile (to E.M.R.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peruzzo, B., Pastor, F.E., Blázquez, J.L. et al. Polarized endocytosis and transcytosis in the hypothalamic tanycytes of the rat. Cell Tissue Res 317, 147–164 (2004). https://doi.org/10.1007/s00441-004-0899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0899-1

Keywords

Navigation