Skip to main content
Log in

Molecular cloning and characterization of a phosphoglycerate mutase gene from Clonorchis sinensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Phosphoglycerate mutase (PGM) is a widely distributed glycolytic enzyme. Two known distinct classes of PGM enzymes were identified, a cofactor-dependent one (dPGM) and a cofactor-independent one (iPGM). A complementary DNA (cDNA) encoding a PGM was cloned from a Clonorchis sinensis cDNA library by large-scale sequencing. This new cDNA contains 955 bp with a putative open reading frame of 256 amino acids, which has a high homology with dPGMs from a number of species. The putative peptide was produced in E. coli and was purified to electrophoretic homogeneity. Enzymatic assays showed that the product of this gene could catalyze the conversion of 3-phosphoglycerate to 2-phosphoglycerate when the cofactor was present and the enzyme activities could be inhibited by vanadate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bond CS, White MF, Hunter WN (2002) Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex. J Mol Biol 316:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Campbell JW, Watson HC, Hodgson GI (1974) Structure of yeast phosphoglycerate mutase. Nature 250:301–303

    Article  PubMed  CAS  Google Scholar 

  • Carreras J, Bartrons R, Grisolia S (1980) Vanadate inhibits 2,3-bisphosphoglycerate dependent phosphoglycerate mutases but does not affect the 2,3-bisphosphoglycerate independent phosphoglycerate mutases. Biochem Biophys Res Commun 96:1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Fothergill-Gilmore LA, Watson HC (1989) The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol 62:227–313

    Article  PubMed  CAS  Google Scholar 

  • Fraser HI, Kvaratskhelia M, White MF (1999) The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett 455:344–348

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Jedrzejas MJ (2001) Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Proteins 45:318–324

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Bairoch A, Koonin EV (1998) A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci 7:1829–1835

    Article  PubMed  CAS  Google Scholar 

  • Grana X, Perez de la Ossa P, Broceno C, Stocker M, Garriga J, Puigdomenech P, Climent F (1995) 2,3-Bisphosphoglycerate-independent phosphoglycerate mutase is conserved among different phylogenic kingdoms. Comp Biochem Physiol B Biochem Mol Biol 112:287–293

    Article  PubMed  CAS  Google Scholar 

  • Jedrzejas MJ (2000) Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. Prog Biophys Mol Biol 73:263–287

    Article  PubMed  CAS  Google Scholar 

  • Jedrzejas MJ, Chander M, Setlow P, Krishnasamy G (2000a) Structure and mechanism of action of a novel phosphoglycerate mutase from Bacillus stearothermophilu. EMBO J 19:1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Jedrzejas MJ, Chander M, Setlow P, Krishnasamy G (2000b) Mechanism of catalysis of the cofactor-independent phosphoglycerate mutase from Bacillus stearothermophilus. Crystal structure of the complex with 2-phosphoglycerate. J Biol Chem 275:23146–23153

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Ogata C, Pflugrath JW, Levitt DG, Sarma R, Banaszak LJ, Pilkis SJ (1996) Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases. Biochemistry 35:6010–6019

    Article  PubMed  CAS  Google Scholar 

  • Leyva-Vazquez MA, Setlow P (1994) Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176:3903–3910

    PubMed  CAS  Google Scholar 

  • Lindqvist Y, Schneider G, Vihko P (1993) Three-dimensional structure of rat acid phosphatase in complex with L(+)-tartrate. J Biol Chem 268:20744–20746

    PubMed  CAS  Google Scholar 

  • Morris VL, Jackson DP, Grattan M, Ainsworth T, Cuppels DA (1995) Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase. J Bacteriol 177:1727–1733

    PubMed  CAS  Google Scholar 

  • Rigden DJ, Alexeev D, Phillips SE, Fothergill-Gilmore LA (1998) The 2.3 Å X-ray crystal structure of S. cerevisiae phosphoglycerate mutase. J Mol Biol 276:449–459

    Article  PubMed  CAS  Google Scholar 

  • Rigden DJ, Mello LV, Setlow P, Jedrzejas MJ (2002) Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity. J Mol Biol 315:1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Song L, Chen S, Yu X, Wu Z, Xu J, Yang G, Zheng N, Hu X, Guo L, Dai J, Xu J, Ji C, Gu S, Ying K (2004) Molecular cloning and characterization of cDNA encoding a ubiquitin-conjugating enzyme from Clonorchis sinensis. Parasitol Res 94:227–232

    Article  PubMed  Google Scholar 

  • Sowadski JM, Handschumacher MD, Murthy HM, Foster BA, Wyckoff HW (1985) Refined structure of alkaline phosphatase from Escherichia coli at 2.8 Å resolution. J Mol Biol 186:417–433

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Jing C, Zhu P, Hu X, Xu J, Wu Z, Yu X (2006) Molecular cloning and characterization of a novel lactate dehydrogenase gene from Clonorchis sinensis. Parasitol Res 99:55–64

    Article  PubMed  Google Scholar 

  • Zhang Y, Foster JM, Kumar S, Fougere M, Carlow CK (2004) Cofactor-independent phosphoglycerate mutase has an essential role in Caenorhabditis elegans and is conserved in parasitic nematodes. J Biol Chem 279:37185–37190

    Article  PubMed  CAS  Google Scholar 

  • Zheng N, Xu J, Wu Z, Chen J, Hu X, Song L, Yang G, Ji C, Chen S, Gu S, Ying K, Yu X (2005) Clonorchis sinensis: molecular cloning and functional expression of novel cytosolic malate dehydrogenase. Exp Parasitol 109:220–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by grants from the Natural Science Foundation of Guangdong Province, China (No.2002B31005) and the Key Program of Science and Technology Department of Guangdong Province, China (No.200223-E4022). The experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbing Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Xu, Z. & Yu, X. Molecular cloning and characterization of a phosphoglycerate mutase gene from Clonorchis sinensis . Parasitol Res 101, 709–714 (2007). https://doi.org/10.1007/s00436-007-0540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0540-9

Keywords

Navigation