Skip to main content
Log in

Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

It is well known that Fas ligand and anti-Fas antibodies can induce apoptosis, although some cancer cells are resistant to their stimuli. On the other hand, phosphatidylinositol 3’-kinase (PI3 K) and Akt mediate the survival signal and allow the cells to escape from apoptosis in various human cancers. Thus, we postulated that LY294002, a PI3 K inhibitor, should inactivate Akt, consequently inhibiting cell proliferation and increase apoptosis in the human gastric carcinoma cell line, MKN-45. Previously, we reported that MKN-45 was resistant against the anti-Fas antibody, CH-11, without interferon-gamma pretreatment in vitro. LY294002 caused a decrease of phosphorylated-Akt and an inhibition of cell proliferation via cell cycle arrest in the G0/G1 phase by P27/Kip1 accumulation, but there was no obvious induction of apoptosis. The simultaneous treatment of LY294002 and CH-11 significantly induced apoptosis confirmed by morphology and DNA ladder formation. Decreased phosphorylated-Akt by LY294002 treatment led to a down-regulation of Mcl-2 and phosphorylated Bad proteins, which are anti-apoptotic factors and belong to the Bcl-2 family. On the other hand, expression levels of the other anti-apoptotic factors, such as FLICE-inhibitory protein (FLIP), Bcl-2 and Bcl-XL, which are associated with the Fas-mediated apoptotic signal pathway, did not change after LY294002 treatment. We concluded that: 1) the PI3K-Akt pathway plays an important role in preventing Fas-mediated apoptosis; and 2) a PI3 K inhibitor, such as LY294002, might be a useful anti-tumoral agent for gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4a,b a
Fig. 5

Similar content being viewed by others

References

  • Araki T, Hayashi M, Watanabe N, Kanuka H, Yoshino J, Miura M, Saruta T (2002) Down-regulation of Mcl-1 by inhibition of the PI3-K/Akt pathway is required for cell shrinkage-dependent cell death. Biochem Biophys Res Commun 290:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285

    CAS  PubMed  Google Scholar 

  • Brenner W, Farber G, Harget T, Lehr HA, Hengstler JG, Thuroff JW (2002) Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer 99:53–57

    Article  CAS  PubMed  Google Scholar 

  • Burger MM, Harris C (1995) UICC study group on basic and clinical cancer research: apoptosis in normal and tumour cells. Int J Cancer 60:590–592

    CAS  PubMed  Google Scholar 

  • Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3- kinase /Akt pathway. Proc Natl Acad Sci 96:4240–4245

    Article  CAS  PubMed  Google Scholar 

  • Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN, Cantley LC, Roberts TM, Vogt PK (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI3-kinase. Science 276:1848–1850

    CAS  PubMed  Google Scholar 

  • Cheng J, Godwin A, Bellacosa A, Taguchi T, Franke T, Hamilton T, Tsichlis P, Testa J (1992) AKT2, a putative oncogene encoding a number of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89:9267–9271

    CAS  PubMed  Google Scholar 

  • Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR (1996) Amplification of AKT2 is human pancreatic cancer cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93:3636–3641

    CAS  PubMed  Google Scholar 

  • Conover CA, Bale LK, Durham SK, Powell DR (2000) Insulin- like growth factor (IGF) binding protein-3 potentiation of IGF action is mediated through the phosphatidylinositol-3-kinase pathway and is associated with alteration in protein kinase B/AKT sensitivity. Endocrinology 141:3098–3103

    CAS  PubMed  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Gene Dev 13:2905–2927

    Article  CAS  Google Scholar 

  • Downward J (1999) How Bad phosphorylation is good for survival. Nat Cell Biol 1:E33-E35

    CAS  PubMed  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC (1997) PI3 K: downstream AKTion blocks apoptosis. Cell 88:435–437

    CAS  PubMed  Google Scholar 

  • Hayashi H, Tatebe S, Osaki M, Goto A, Suzuki Y, Ito, H (1997) Expression of Fas antigen and its mediation of apoptosis in human gastric cancer cell lines. Jpn J Cancer Res 88:49–55

    CAS  PubMed  Google Scholar 

  • Hengst L, Reed SI (1996) Translational control of p27/Kip1 accumulation during the cell cycle. Science 271:1861–1864

    CAS  PubMed  Google Scholar 

  • Hockenbery D (1995) Defining apoptosis. Am J Pathol 146:16–19

    Google Scholar 

  • Houghton J A, Harwood FG, Gibson AA, Tillman DM (1997) The fas signaling pathway is functional in colon carcinoma cells and induces apoptosis. Clin Cancer Res 3:2205–2209

    CAS  PubMed  Google Scholar 

  • Hu S, Vincentz, C, Ni J, Genyz R, Dixit VM (1997) I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1 –and CD-95-induced apoptosis. J Biol Chem 272:17255–17257

    Article  CAS  PubMed  Google Scholar 

  • Huang HM, Huang CJ, Yen JJ (2000) Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3 K/Akt pathways. Blood 96:1764–1771

    CAS  PubMed  Google Scholar 

  • Irmler M, Thome M, Harne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190- 195

    CAS  PubMed  Google Scholar 

  • Kandasamy K, Srivastava RK (2002) Role of the phosphatidylinositol 3’-kinase/PTEN/Akt kinase pathway in tumor necrosis-related apoptosis- inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 62:4929–4937

    CAS  PubMed  Google Scholar 

  • Kang YH, Lee HS, Kim WH (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest 82:285–291

    CAS  PubMed  Google Scholar 

  • Khwaja A (1999) Akt is more than just a Bad kinase. Nature 401:33–34

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter, ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    CAS  PubMed  Google Scholar 

  • Lee SH, Shin MS, Kim HS, Park WS, Kim SY, Jang JJ, Rhim KJ, Jang J, Lee HK, Park JY, Oh RR, Han SY, Lee JH, Lee JY, Yoo NJ (1999) Somatic mutation of Fas (Apo-1/CD95) gene in cutaneous squamous cell carcinoma arising from a burn scar. J Invest Dermatol 114:122–126

    Article  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    CAS  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    CAS  PubMed  Google Scholar 

  • MacKeigan JP, Taxman DJ, Hunter D, Earp III HS, Graves LM, Ting JP- Y (2002) Inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of taxol and mitogen-activated protein kinase inhibition. Clin Cancer Res 8:2091–2099

    CAS  PubMed  Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    CAS  PubMed  Google Scholar 

  • O’Gorman DM, McKenna SL, McGahon AJ, Cotter TG (2001) Inhibition of PI3-kinase sensitises HL60 human leukemia cells to both chemotherapeutic drug- and Fas-induced apoptosis by a JNK independent pathway. Leukemia Res 25:801–811

    Article  CAS  Google Scholar 

  • Osaki M, Kase S, Kodani I, Watanabe M, Adachi H, Ito H (2001) Expression of Fas and Fas ligand in human gastric adenomas and intestinal-type carcinomas: correlation with proliferation and apoptosis. Gastric Cancer 4:198–205

    Article  CAS  PubMed  Google Scholar 

  • Pagano M, Tam SW, Theodoras AM, Beer-Romero P, DelSal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    CAS  PubMed  Google Scholar 

  • Panka DJ, Mana T, Suhara T, Walsh K, Mier JW (2001) Phosphatidylinositol 3-kinase/Akt activety regulates c-FLIP expression in tumor cells. J Biol Chem 276:6893–6896

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Oh RR, Kim YS, Park JY, Lee SH, Shin MS, Kim SY, Kim PJ, Lee HK, Yoo NJ, Lee JY (2001) Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J Pathol 193:162–168

    Article  CAS  PubMed  Google Scholar 

  • Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE (2000) Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275:10761–10766

    Article  CAS  PubMed  Google Scholar 

  • Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL, Tawa P, Xanthoudakis S, Nasir J, Martindate D, Koop BF, Peterson EP, Thronberry NA, Huang J, MacPherson DP, Black SC, Hornung F, Lenardo MJ, Hayden MR, Roy S, Nicholson DW (1998) Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase- 8 recruitment and activation by the CD-95 (Fas, Apo-1) receptor complex. Cell Death Differ 5:271–288

    CAS  PubMed  Google Scholar 

  • Semba S, Itoh N, Ito M, Harada M, Yamakawa M (2002) The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chrome (LY294002), a specific inhibitor of phosphatidylinositol 3’-kinase, in human colon cancer cells. Clin Cancer Res 8:1957–1963

    CAS  PubMed  Google Scholar 

  • Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1:469–474

    Article  CAS  PubMed  Google Scholar 

  • Soria JC, Lee HY, Lee JI, Wang L, Issa JP, Kemp BL, Liu DD, Kurie JM, Mao L, Khuri FR (2002) Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 8:1178–1184

    CAS  PubMed  Google Scholar 

  • Stambolic V, Mak TW, Woodgett JR (1999) Modulation of cellular apoptotic potential: contributions of oncogenesis. Oncogene 18:6094- 6103

    Article  CAS  PubMed  Google Scholar 

  • Stewart BW (1994) Mechanisms of apoptosis: integration of genetic, biochemical, and cellular indicators. J Natl Cancer Inst 86:1286–1296

    CAS  PubMed  Google Scholar 

  • Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC (1998) A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 273:7787–7790

    CAS  PubMed  Google Scholar 

  • Takayama H, Takakuwa T, Dong Z, Nonomura N, Okuyama A, Nagata S, Aozasa K (2001) Fas gene mutations in prostatic intraepithelial neoplasia and concurrent carcinoma: analysis of laser capture microdissected specimens. Lab Invest 81:283–288

    CAS  PubMed  Google Scholar 

  • Timmer T, de Vries EG, de Jong S (2002) Fas receptor-mediated apoptosis: a clinical application? J Pathol 196:125–134

    Article  CAS  PubMed  Google Scholar 

  • Ullich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    CAS  PubMed  Google Scholar 

  • Vassilev A, Ozer Z, Navara C, Mahajan S, Uckun FM (1999) Bruton’s tyrosine kinase as an inhibitor of the Fas/CD95 death-inducing signal complex. J Biol Chem 274:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Viglietto G, Motti ML, Buuni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A, Santoro M (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Wallach D, Varfolomeey EE, Malinin NL, Goltsey YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    Google Scholar 

  • Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF (1999) The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19:6195–6206

    CAS  PubMed  Google Scholar 

  • Wang Y, Chan S, Tsang BK (2002) Involvement of inhibitory nuclear factor-kappaB (NfkappaB)-independent NfkappaB activation in the gonadotropic regulation of X-linked inhibitor of apoptosis expression during ovarian follicular development in vitro. Endocrinology 143:2732–2740

    Article  CAS  PubMed  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317

    CAS  PubMed  Google Scholar 

  • Yao Z, Okabayashi Y, Yotsudo Y, Kitamura T, Ogawa W, Kasuga M (2002) Role of Akt in growth and survival of PANC-1 pancreatic cancer cells. Pancreas 24:42–46

    Article  PubMed  Google Scholar 

  • Zhang XD, Franco AV, Myers K, Gray CP, Nguyen T, Hersey P (1999) Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59:2747–2753

    CAS  PubMed  Google Scholar 

  • Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P (2000) Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol 164:3961–3970

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hidetoshi Yamazaki (Division of Immunology, Tottori University) for his excellent technical advice regarding flow cytometry analysis. We also thank Mr. Norihisa Itaki, Ms Mayumi Kajimura, Ms Yoshiko Nishimiya, and Dr. Tonang Dwi Ardyanto, for their skillful technical assistance. This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (grant number, 14370069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiko Osaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osaki, M., Kase, S., Adachi, K. et al. Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J Cancer Res Clin Oncol 130, 8–14 (2004). https://doi.org/10.1007/s00432-003-0505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-003-0505-z

Keywords

Navigation