Skip to main content
Log in

Not all sharks are “swimming noses”: variation in olfactory bulb size in cartilaginous fishes

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of functional rather than phylogenetic adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd International symposium on information theory Akademiai Kiado, Budapest, Hungary, pp 267–281

  • Allison A, Warwick R (1949) Quantitative observations on the olfactory system of rabbit. Brain 72:186–197

    CAS  PubMed  Google Scholar 

  • Ari C (2011) Encephalization and brain organization of mobulid rays (Myliobatiformes, Elasmobranchii) with ecological perspectives. Open Anat J 3:1–13

    Google Scholar 

  • Ariëns Kappers CU (1906) The structure of the teleostean and selachian brain. J Comp Neurol Psychol 16:1–109

    Google Scholar 

  • Aronson LR (1963) The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Gilbert PW (ed) Sharks and survival. Heath, Boston, pp 165–241

    Google Scholar 

  • Aschliman NC, Claeson KM, McEachran JD (2012) Phylogeny of Batoidea. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, New York

    Google Scholar 

  • Atema J (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol Bull 191:129–138

    Google Scholar 

  • Bäckström K (1924) Contributions to the forbrain morphology in selachians. Acta Zool 5:123–240

    Google Scholar 

  • Bang BG, Cobb S (1968) Size of olfactory bulb in 108 species of birds. Auk 85:55–61

    Google Scholar 

  • Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats, and insectivores. Phil Trans R Soc Lond B 348:381–392

    Google Scholar 

  • Bauchot R, Platel R, Ridet JM (1976) Brain-body weight relationships in Selachii. Copeia 2:305–310

    Google Scholar 

  • Bauchot R, Ridet J-MM, Bauchot ML (1989) The brain organization of butterfly fishes. In: Balon EK, Motta PJ (eds) Environmental biology of fishes. Kluwer Academic Publishers, Dordrecht, pp 205–219

    Google Scholar 

  • Bauchot R, Platel R, Ridet JM, Diagne M, Delfini C (1995) Encephalisation et adaptations ecobiologiques chez les chondrichthyans. Cybium 19:153–165

    Google Scholar 

  • Bell M (1993) Convergent evolution of nasal structure in sedentary elasmobranchs. Copeia 1993:144–158

    Google Scholar 

  • Bhatnagar P, Kallen FC (1975) Quantitative observations on the nasal epithelia and olfactory innervation in bats. Suggested design mechanisms for the olfactory bulb. Acta Anat 91:272–282

    CAS  PubMed  Google Scholar 

  • Bigelow H, Schroeder W (1948) Fishes of the western north Atlantic, part 1: lancelets, cyclostomes, sharks. Mem Sears Found Mar Res 1:59–576

    Google Scholar 

  • Bleckmann H, Hofmann MH (1999) Special senses. In: Hamlett WC (ed) Biology of Elasmobranch fishes. John Hopkins University Press, Baltimore, pp 300–328

    Google Scholar 

  • Bonfil R, Meÿer M, Scholl MC, Johnson R, O’Brien S, Oosthuizen H, Swanson S, Kotze D, Paterson M (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310:100–103

    CAS  PubMed  Google Scholar 

  • Brandstätter R, Kotrschal K (1990) Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio), and sabre carp (Pelecus cultratus). Brain Behav Evol 35:195–211

    PubMed  Google Scholar 

  • Branstetter S, Musick JA (1994) Age and growth estimates for the sand tiger in the Northwestern Atlantic Ocean. Trans Am Fish Soc 123:242–254

    Google Scholar 

  • Bres M (1993) The behaviour of sharks. Rev Fish Biol Fish 3:133–159

    Google Scholar 

  • Bullock TH, Northcutt RG (1984) Nervus terminalis in dogfish (Squalus acanthias, Elasmobranchii). Neurosci Lett 44:155–160

    CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caprio J (1982) High sensitivity and specificity of olfactory and gustatory receptors of catfish to amino acids. In: Hara TJ (ed) Chemoreception in Fishes. Elsevier, Amsterdam, pp 109–134

    Google Scholar 

  • Carey FG, Scharold JV (1990) Movements of blue sharks (Prionace glauca) in depth and course. Mar Biol 106:329–342

    Google Scholar 

  • Carey FG, Kanwisher JW, Brazier O, Gabrielson G, Casey JG, Pratt HL (1982) Temperature and activities of a white shark, Carcharodon carcharias. Copeia 1982:254–260

    Google Scholar 

  • Charvet CJ, Darlington RB, Finlay BL (2011) Brain scaling across vertebrates: conservation and variation. Brain Behav Evol 78:186

    Google Scholar 

  • Clark DA, Mitra PP, Wang SS-H (2001) Scalable architecture in mammalian brains. Nature 411:189–193

    CAS  PubMed  Google Scholar 

  • Collin S (2012) The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behav Evol 80:80–96

    PubMed  Google Scholar 

  • Collin SP, Pettigrew JD (1988a) Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol 31:269–282

    CAS  PubMed  Google Scholar 

  • Collin SP, Pettigrew JD (1988b) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high-density areae. Brain Behav Evol 31:283–295

    CAS  PubMed  Google Scholar 

  • Compagno LJV (1984a) FAO Species Catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. II. Carcharhiniformes, vol 4. FAO Fisheries Synopsis, Rome, Italy

  • Compagno LJV (1984b) FAO Species Catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. I. Hexanchiformes to Lamniformes, vol 4. FAO Fisheries Synopsis, Rome, Italy

  • Compagno LJV (1988) Sharks of the Order Carcharhiniformes. Princeton University Press, Princeton

    Google Scholar 

  • Compagno LJV (1990) Alternative life-history styles of cartilaginous fishes in time and space. Environ Biol Fish 28:33–75

    Google Scholar 

  • Corfield JR, Wild JM, Parsons S, Kubke MF (2012) Morphometric analysis of telencephalic structure in a variety of neognath and paleognath bird species reveals regional differences associated with specific behavioral traits. Brain Behav Evol 80:181–195

    PubMed  Google Scholar 

  • Cox G, Francis M (1997) Sharks and rays of New Zealand. Canterbury University Press, Canterbury

    Google Scholar 

  • Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J Sci 40:219–259

    Google Scholar 

  • Deacon TW (1990) Fallacies of progression in theories of brain-size evolution. Int J Primatol 11:193–236

    Google Scholar 

  • DeBose JL, Nevitt GA (2008) The use of odors at different spatial scales: comparing birds with fish. J Chem Ecol 34:867–881

    CAS  PubMed  Google Scholar 

  • Demski LS, Northcutt RG (1996) The brain and cranial nerves of the white shark: an evolutionary perspective. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 121–130

    Google Scholar 

  • Didier DA (2004) Phylogeny and classification of extant Holocephali. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, New York, pp 115–135

    Google Scholar 

  • Didier D, Kemper J, Ebert DA (2012) Phylogeny, biology, and classification of extant holocephalans. In: Carrier J, Musick J, Heithaus M (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, New York, pp 97–124

    Google Scholar 

  • Domeier ML, Nasby-Lucas N (2008) Migration patterns of white sharks Carcharodon carcharias tagged at Guadalupe Island, Mexico, and identification of an eastern Pacific shared offshore foraging area. Mar Ecol Prog Ser 370:221–237

    Google Scholar 

  • Døving B (1986) Functional properties of the fish olfactory system. In: Ottoson D (ed) Progress in sensory physiology, vol 6. Springer, Berlin, pp 39–104

    Google Scholar 

  • Døving KB, Pinching AJ (1973) Selective degeneration of neurones in the olfactory bulb following prolonged odour exposure. Brain Res 52:115–129

    PubMed  Google Scholar 

  • Døving K, Selset R, Thommesen G (1980) Olfactory sensitivity to bile-acids in salmonid fishes. Acta Physiol Scand 108:123–131

    PubMed  Google Scholar 

  • Dryer L, Graziadei PPC (1993) A pilot study on morphological compartmentalization and heterogeneity in the elasmobranch olfactory bulb. Anat Embryol 190:41–51

    Google Scholar 

  • Dryer L, Graziadei PPC (1994a) Mitral cell dendrites: a comparative approach. Anat Embryol 189:91–106

    CAS  PubMed  Google Scholar 

  • Dryer L, Graziadei PPC (1994b) Projections of the olfactory bulb in an elasmobranch fish, Sphyrna tiburo: segregation of inputs in the telencephalon. Anat Embryol 190:563–572

    CAS  PubMed  Google Scholar 

  • Dryer L, Graziadei PPC (1996) Synaptology of the olfactory bulb of an elasmobranch fish, Sphyrna tiburo. Anat Embryol 193:563–572

    Google Scholar 

  • Dudley SFJ, Anderson-Reade MD, Thompson GS, McMullen PB (2000) Concurrent scavenging off a whale carcass by great white sharks, Carcharodon carcharias, and tiger sharks, Galeocero cuvier. Fish Bull 98:646–649

    Google Scholar 

  • Eastman JT, Lannoo MJ (1998) Morphology of the brain and sense organs in the snailfish. Neural convergence and sensory compensation on the Antarctic shelf. J Morph 237:213–236

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1972) New insights into the organization of the shark brain. Comp Biochem Physiol 42A:121–129

    Google Scholar 

  • Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    CAS  PubMed  Google Scholar 

  • Edinger L (1908) The relations of comparative anatomy to comparative psychology. J Comp Neurol Psychol 18:437–457

    Google Scholar 

  • Endres CS, Lohmann KJ (2013) Detection of coastal mud odors by loggerhead sea turtles: a possible mechanism for sensing nearby land. Mar Biol. doi:10.1007/s00227-013-2285-6

    Google Scholar 

  • Faucette JR (1969) Accessory olfactory bulbs and lateral telecephalic wall of the ratfish. J Comp Neurol 137:407–431

    CAS  PubMed  Google Scholar 

  • Ferrando S, Gambardella C, Ravera S, Bottero S, Ferrando T, Gallus L, Manno V, Salati A, Ramoino P, Tagliafierro G (2009) Immunolocalization of G-Protein alpha subunits in the olfactory system of the cartilaginous fish Scyliorhinus canicula. Anat Rec 292:1771–1779

    CAS  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    CAS  PubMed  Google Scholar 

  • Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–308

    CAS  PubMed  Google Scholar 

  • Finlay BL, Clancy B, Darlington RB (2010) Late still equals large. Brain Behav Evol 75:4–6

    Google Scholar 

  • Finlay BL, Hinz F, Darlington RB (2011) Mapping behavioral evolution onto brain evolution: the strategic roles of conserved organization in individuals and species. Philos Trans R Soc Lond B 366:2111–2123

    Google Scholar 

  • Fishelson l, Baranes A (1997) Ontogenesis and cytomorphology of the nasal olfactory organs in the Oman shark, Iago omanensis (Triakidae), in the Gulf of Aqaba, Red Sea. Anat Rec 249:409–421

  • Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22:1367–1375

    CAS  PubMed  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    CAS  PubMed  Google Scholar 

  • Fuller C, Yettaw H, Byrd C (2006) Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution. J Comp Neurol 499:218–230

    PubMed  Google Scholar 

  • Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216:2165–2171

    PubMed  Google Scholar 

  • Gardiner JM (2011) Multisensory integration in shark feeding behavior. University of South Florida, Tampa

    Google Scholar 

  • Gardiner JM, Hueter RE, Maruska KP, Sisneros JA, Casper BM, Mann DA, Demski LS (2012) Sensory physiology and behavior of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, New York

    Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Gemne G, Døving KB (1969) Ultrastructural properties of primary olfactory neurons in fish (Lota lota L.). Am J Anat 126:457–475

    CAS  PubMed  Google Scholar 

  • Gittleman JL (1991) Carnivore olfactory bulb size: allometry, phylogeny, and ecology. J Zool 225:253–272

    Google Scholar 

  • Goldman KT (2002) Aspects of age, growth, demographics and thermal biology of two lamniform shark species. College of William and Mary, Williamsburg

    Google Scholar 

  • González-Isáis M, Domínguez HMM (2004) Comparative anatomy of the superfamily Myliobatoidea (Chondrichthyes) with some comments on phylogeny. J Morph 262:517–535

    PubMed  Google Scholar 

  • Gonzalez-Voyer A, Winberg S, Kolm N (2009) Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes. BMC Evol Biol 9:238–250

    PubMed Central  PubMed  Google Scholar 

  • Goto T (2001) Comparative anatomy, phylogeny, and cladistic classification of the order Orectolobiformes (Chondrichtyes, Elasmobranchii). Mem Grad Sch Fish Sci Hokkaido Univ 48:1–100

    Google Scholar 

  • Guttridge TL, Myrberg AA, Porcher IF, Sims DW, Krause J (2009) The role of learning in shark behaviour. Fish Fish 10:450–469

    Google Scholar 

  • Hamdani EH, Døving KB (2007) The functional organization of the fish olfactory system. Prog Neurobiol 82:80–86

    CAS  Google Scholar 

  • Hansen A, Finger TE (2000) Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain Behav Evol 55:100–110

    CAS  PubMed  Google Scholar 

  • Hara TJ (1975) Olfaction in fish. Prog Neurobiol 5:271–335

    CAS  PubMed  Google Scholar 

  • Hara TJ (1994) The diversity of chemical stimulation in fish olfaction and gustation. Rev Fish Biol Fish 4:1–35

    Google Scholar 

  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131

    CAS  PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Healy S, Guilford T (1990) Olfactory-bulb size and nocturnality in birds. Evolution 44:339–346

    Google Scholar 

  • Heithaus MR (2001) The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch rates. Environ Biol Fish 61:25–35

    Google Scholar 

  • Herring PJ (1987) Systematic distribution of bioluminescence in living organisms. J Biolum Chemilum 1:147–163

    CAS  Google Scholar 

  • Hilborn R, Mange M (1997) The ecological detective: confronting models with data. Princeton University Press, Princeton

    Google Scholar 

  • Hodgson ES, Mathewson RF (1978a) Sensory biology of sharks, skates, and rays. U.S. Office of Naval Research, Arlington, VA

  • Hodgson ES, Mathewson RF (1978b) Electrophysiological studies of chemoreception in elasmobranchs. In: Hodgeson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Naval research, Arlington, pp 227–267

    Google Scholar 

  • Hofmann MH, Northcutt RG (2008) Organization of major telencephalic pathways in an elasmobranch, the thornback ray Platyrhinoidis triseriata. Brain Behav Evol 72:307–325

    PubMed  Google Scholar 

  • Hofmann MH, Northcutt RG (2012) Forebrain organization in elasmobranchs. Brain Behav Evol 80:142–151

    PubMed  Google Scholar 

  • Holl A (1973) Feinstruktur des riecheptithels von Chimaera monstrosa (Holocephali). Mar Biol 23:59–72

    Google Scholar 

  • Huber R, Rylander MK (1992) Brain morphology and turbitity preference in Notropis and related genera (Cyprinidae, Teleostei). Environ Biol Fish 33:153–165

    Google Scholar 

  • Hueter RE, Mann DE, Maruska KP, Sisneros JA, Demski LS (2004) Sensory biology of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, London, pp 325–368

    Google Scholar 

  • Hutcheon JM, Kirsch JW, Garland T Jr (2002) A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera. Brain Behav Evol 60:165–180

    PubMed  Google Scholar 

  • Ito H, Yoshimoto M, Somiya H (1999) External brain form and cranial nerves of the megamouth shark, Megachasma pelagios. Copeia 1999:210–213

    Google Scholar 

  • Iwaniuk AN, Hurd PL (2005) The evolution of cerebrotypes in birds. Brain Behav Evol 65:215–230

    PubMed  Google Scholar 

  • Iwaniuk AN, Gutierrez-Ibanez C, Pakan JMP, Wylie DW (2010) Allometric scaling of the tectofugal pathway in birds. Brain Behav Evol 75:122–137

    PubMed  Google Scholar 

  • Jacobs LF (2012) From chemotaxis to the cognitive map: the function of olfaction. Proc Nat Acad Sci 109(Suppl. 1):10693–10700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  • Johnson RH, Nelson DR (1978) Copulation and possible olfaction-mediated pair formation in two species of carcharhinid sharks. Copeia 1978:539–542

    Google Scholar 

  • Johnston JB (1911) The telencephalon of selachians. J Comp Neurol 21:1–113

    Google Scholar 

  • Kajiura SM, Forni JB, Summers AP (2005) Olfactory morphology of carcharhinid and sphyrnid sharks: does the cephalofoil confer a sensory advantage? J Morph 264:253–263

    PubMed  Google Scholar 

  • Kajiura SM, Cornett AD, Yopak KE (2010) Sensory adaptations to the environment: electroreceptors as a case study. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives ii: biodiversity, adaptive physiology, and conservation. CRC Press, New York

    Google Scholar 

  • Kleerekoper H (1978) Chemoreception and its interaction with flow and light perception in the locomotion and orientation of some elasmobranchs. In: Hodgeson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Naval Research, Arlington, pp 269–329

    Google Scholar 

  • Kotrschal K, Brandstätter R, Gomahr A, Junger H, Palzenberger M, Zaunreiter M (1991) Brain and sensory systems. In: Winfield IJ, Nelson JS (eds) Cyprinid fishes, systematics, biology and exploitation. Chapman and Hall, London, pp 285–331

    Google Scholar 

  • Kotrschal K, van Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408

    Google Scholar 

  • Kruska DCT (1988) The brain of the basking shark (Cetorhinus maximus). Brain Behav Evol 32:353–363

    CAS  PubMed  Google Scholar 

  • Laberge F, Hara T (2001) Neurobiology of fish olfaction: a review. Brain Res Rev 36:46–59

    CAS  PubMed  Google Scholar 

  • Last PR, Stevens JD (2009) Sharks and rays of Australia, 2nd edn. CSIRO Publishing, Melbourne

    Google Scholar 

  • Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland TJ (2008) Morphometrics of the avian small intestine, compared with nonflying mammals: a phylogenetic approach. Physiol Biochem Zool 81:526–550

    PubMed  Google Scholar 

  • Le Boeuf BJ, Riedman M, Keyes RS (1982) White shark predation on pinnipeds in California coastal waters. Fish Bull 80:891–895

    Google Scholar 

  • Lisney TJ (2010) A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Rev Fish Biol Fish 20:571–590

    Google Scholar 

  • Lisney TJ, Collin SP (2006) Brain morphology in large pelagic fishes: a comparison between sharks and teleosts. J Fish Biol 68:532–554

    Google Scholar 

  • Lisney TJ, Bennett MB, Collin SP (2007) Volumetric analysis of sensory brain areas indicates ontogenetic shifts in the relative importance of sensory systems in elasmobranchs. Raffles Bull Zool 14:7–15

    Google Scholar 

  • Lisney TJ, Yopak KE, Montgomery JC, Collin SP (2008) Variation in brain organization and cerebellar foliation in chondrichthyans: batoids. Brain Behav Evol 72:262–282

    PubMed  Google Scholar 

  • Lisney TJ, Theiss SM, Collin SP, Hart NS (2012) Vision in elasmobranchs: 21st century advances. J Fish Biol 80:2024–2054

    CAS  PubMed  Google Scholar 

  • Liu Z (2001) Phylogenetic relationships of the living chimaeroid fishes based on characters of the brain and cranial nerves. New Mexico J Sci 41:1–24

    Google Scholar 

  • Long DJ, Jones RE (1996) White shark predation and scavenging on cetaceans in the eastern North Pacific Ocean. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 293–307

    Google Scholar 

  • Losey GS, Mcfarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 2003:433–454

    Google Scholar 

  • Lowe CG, Wetherbee BM, Crow GL, Tester AL (1996) Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environ Biol Fish 47:203–211

    Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: A modular system for evolutionary analysis. Version 2.6. Mesquite project website. http://mesquiteproject.org/

  • Marshall NB (1979) Developments in deep-sea biology. Blandford, Poole

    Google Scholar 

  • Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357:153–155

    CAS  PubMed  Google Scholar 

  • McEachran JD, Dunn KA (1998) Phylogenetic analysis of skates, a morphologically conservative clade of elasmobranchs (Chondrichthyes: Rajidae). Copeia 1998:271–290

    Google Scholar 

  • Mcfarland W (1991) The visual world of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 16–38

    Google Scholar 

  • Meisamie E (1989) A proposed relationship between increases in the number of olfactory receptor neurons, convergence ratio and sensitivity in the developing rat. Dev Brain Res 46:9–19

    Google Scholar 

  • Meng Q, Yin M (1981a) A study of the olfactory organ of the sharks. Trans Chin Ichthy Soc 2:1–24

    Google Scholar 

  • Meng Q, Yin M (1981b) A study on the olfactory organ of skates, rays and chimaeras. J Fish China 5:209–228

    Google Scholar 

  • Meredith TL, Kajiura SM (2010) Olfactory morphology and physiology of elasmobranchs. J Exp Biol 213:3449–3456

    PubMed  Google Scholar 

  • Meredith TL, Kajiura SM, Hansen A (2013) The somatotopic organization of the olfactory bulb in elasmobranchs. J Morph 274:447–455

    PubMed  Google Scholar 

  • Meyer CG, Papastamatiou YP, Holland KN (2010) A multiple instrument approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo cuvier) and Galapagos sharks (Carcharhinus galapagensis) at French Frigate Shoals, Hawaii. Mar Biol 157:1857–1868

    Google Scholar 

  • Midford PE, Garland T, Maddison WP (2009) PDAP:PDTREE: A MESQUITE translation of the PDTREE application of Garland, et al.’s phenotypic diversity analysis programs, version 1.16. Mesquite project website. http://mesquiteproject.org/pdap_mesquite/

  • Montgomery JC (1988) Sensory physiology. In: Shuttleworth T (ed) Physiology of Elasmobranch Fishes. Springer, Berlin, pp 79–98

    Google Scholar 

  • Montgomery JC, Sutherland BW (1997) Sensory development of the Antarctic silverfsh Pleuragramma antarcticum: a test for the ontogenetic shift hypothesis. Polar Biol 18:112–115

    Google Scholar 

  • Montgomery JC, Bodznick D, Yopak KE (2012) The cerebellum and cerebellar-like structures of cartilaginous fishes. Brain Behav Evol 80:152–165

    PubMed  Google Scholar 

  • Mull C, Yopak KE, Dulvy N (2011) Does more maternal investment mean a larger brain? Evolutionary relationship between reproductive mode and brain size in chondrichthyans. Mar Fresh Res 62:567–575

    Google Scholar 

  • Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, New York, pp 193–274

  • Naylor GJP (1992) The phylogenetic relationships among requiem and hammerhead sharks: inferring phylogeny when thousands of equally most parsimonious trees result. Cladistics 8:295–318

    Google Scholar 

  • Naylor GJP, Caira JN, Jensen K, Rosana KAM, Straube N, Lakner C (2012) Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. In: Carrier J, Musick J, Heithaus M (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, New York, pp 31–56

    Google Scholar 

  • Nevitt G, Losekoot M, Weimerskirch H (2008) Evidence for olfactory search in wandering albatross, Diomedea exulans. Proc Natl Acad Sci 105:4576–4581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967) Comparative anatomy of olfactory centres and tracts. In: Zotterman Y (ed) Progress in brain research, vol 23., Elsevier, Amsterdam, Netherlands, pp 1–64

  • Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429

    Google Scholar 

  • Northcutt RG (1978a) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Naval Research, Arlington, pp 117–194

    Google Scholar 

  • Northcutt RG (1978b) Forebrain and midbrain organization in lizards and its phylogenetic significance. In: Greenberg N, MacLean P (eds) Behavior and neurology of lizards. National Institutes of Mental Health, Rockville, pp 11–64

    Google Scholar 

  • Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2012) Comparative Analyses of Phylogenetics and Evolution in R, version 0.5. Comprehensive R Archive Network. http://cran.r-project.org/package=caper

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    CAS  PubMed  Google Scholar 

  • Panhuber H, Laing DG (1987) The size of mitral cells is altered when rats are exposed to an odor from their day of birth. Brain Res 34:133–140

    Google Scholar 

  • Panhuber H, Laing DG, Willcox ME, Eagleson GK, Pittman EA (1985) The distribution of the size and number of mitral cells in the olfactory bulb of the rat. J Anat 140:297–308

    PubMed Central  PubMed  Google Scholar 

  • Platel R (1976) Analyse volumétrique comprée des principales subdivisions encéphaliques chez les reptiles sauriens. J Hirnforsch 17:513–537

    CAS  PubMed  Google Scholar 

  • Platel R (1980) Comparative volumetric analysis of the principal subdivisions of the telencephalon in saurian reptiles. J Hirnforsch 21:271–291

    CAS  PubMed  Google Scholar 

  • Platel R, Delfini C (1986) Encephalization of the marine lamprey, Petromyzon marinus (L.). Quantitative analysis of the principle subdivisions. J Hirnforsch 27:279–293

    CAS  PubMed  Google Scholar 

  • Pollen AA, Dobberfuhl AP, Scace J, Igulu MM, Renn SCP, Shumway CA, Hofmann HA (2007) Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav Evol 70:21–39

    PubMed  Google Scholar 

  • Purvis A, Garland T (1993) Polytomies in comparative analyses of continuous characters. Syst Biol 42:569–575

    Google Scholar 

  • Purvis A, Rambaut A (1995a) Comparative analysis by independent contrasts (CAIC): A statistical package for the Apple Macintosh. User’s Guide. University of Oxford, Oxford

  • Purvis A, Rambaut A (1995b) Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analyzing comparative data. Comp Appl Biosci 11:247–251

    CAS  PubMed  Google Scholar 

  • Puzdrowski RL, Gruber S (2009) Morphologic features of the cerebellum of the Atlantic stingray, and their possible evolutionary significance. Integr Zool 4:110–122

    PubMed  Google Scholar 

  • Reep RL, Finlay BL, Darlington RB (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70

    CAS  PubMed  Google Scholar 

  • Rehkämper G, Haase E, Frahm H (1988) Allometric comparison of brain weight and brain structure volumes in different breeds of the domestic pigeon, Columba livia f.d. (fantails, homing pigeons, strassers). Brain Behav Evol 31:141–149

    PubMed  Google Scholar 

  • Ridet JM, Bauchot R (1990) Quantitative analysis of the teleost brain: evolutionary and adaptive features of encephalization. II. Primary brain subdivisions. J Hinforsch 31:433–458

    CAS  Google Scholar 

  • Rosenberger LJ (2001) Phylogenetic relationships within the stingray genus Dasyatis (Chondrichthyes: Dasyatidae). Copeia 2001:615–627

    Google Scholar 

  • Safi K, Dechmann DKN (2005) Adaptation of brain regions to habitat complexity: a comparative analysis in bats (Chiroptera). Proc R Soc Lond B 272:179–186

    Google Scholar 

  • Sarko DK, Catania KC, Leitch DB, Kaas JH, Herculano-Houzel S (2009) Cellular scaling rules of insectivore brains. Front Neuroanat 3:1–8

    Google Scholar 

  • Schluessel V, Bennett MB, Bleckmann H, Blomberg S, Collin SP (2008) Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure-function relationships based on phylogeny and ecology. J Morph 269:1365–1386

    PubMed  Google Scholar 

  • Schluessel V, Bennett MB, Bleckmann H, Collin SP (2010) The role of olfaction throughout juvenile development: functional adaptations in elasmobranchs. J Morph 271:451–461

    PubMed  Google Scholar 

  • Shirai S (1992) Phylogenetic relationships of the angel sharks, with comments on elasmobranch phylogeny (Chondrichthyes, Squatinidae). Copeia 1992:505–518

    Google Scholar 

  • Shirai S (1996) Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic Press, San Diego, pp 9–34

    Google Scholar 

  • Shultz S, Dunbar RIM (2006) Both social and ecological factors predict ungulate brain size. Proc R Soc Lond B 273:207–215

    Google Scholar 

  • Skomal G, Natanson (2003) Age and growth of the blue shark (Prionace glauca) in the North Atlantic Ocean. 101:627–639

  • Smeets WJAJ (1998) Cartilaginous fishes. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin, pp 551–654

    Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes: structural and functional correlations. Springer, New York

    Google Scholar 

  • Smith TD, Bhatnagar KP (2004) Microsmatic primates: reconsidering how and when size matters. Anat Rec 279B:24–31

    Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Strong WRJ, Murphy RC, Bruce BD, Nelson DR (1992) Movements and associated observations of bait-attracted while sharks, Carcharodon carcharias: a preliminary report. Aust J Mar Fresh Res 43:13–20

    Google Scholar 

  • Taylor GM, Nol E, Boire D (1995) Brain regions and encephalization in anurans: adaptation or stability? Brain Behav Evol 45:96–109

    CAS  PubMed  Google Scholar 

  • Tester AL (1963) Olfaction, gustation and the common chemical sense in sharks. In: Gilbert PW (ed) Sharks and survival. D.C. Health, Boston, MA, pp 255–282

  • Theisen B, Zeiske E, Breucker H (1986) Functional morphology of the olfactory organs in the spiny dogfish (Squalus acanthias L.) and the small-spotted catshark (Scyliorhinus canicula L.). Acta Zool Stockh 67:73–86

    Google Scholar 

  • Theiss S, Hart NS, Collin SP (2009) Morphological indicators of olfactory capability in wobbegong sharks (Orectolobidae, Elasmobranchii). Brain Behav Evol 73:91–101

    PubMed  Google Scholar 

  • Thommesen G (1983) Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. Acta Physiol Scand 117:241–249

    CAS  PubMed  Google Scholar 

  • Timm LL, Fish FE (2012) A comparative morphological study of head shape and olfactory cavities of sharks inhabiting benthic and coastal/pelagic environments. J Exp Mar Biol Ecol 414–415:75–84

    Google Scholar 

  • Tricas TC (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behaviour. Environ Biol Fish 60:77–92

    Google Scholar 

  • Tricas TC, McCosker JE (1984) Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc Cal Acad Sci 43:221–238

    Google Scholar 

  • Tricas TC, Kajiura SM, Summers AP (2009) Response of the hammerhead shark olfactory epithelium to amino acid stimuli. J Comp Physiol A 195:947–954

    CAS  Google Scholar 

  • Trotier D, Døving KB (1996) Functional role of receptor neurons in encoding olfactory information. J Neurobiol 30:58–66

    CAS  PubMed  Google Scholar 

  • Wagner HJ (2001a) Brain areas in abyssal demersal fishes. Brain Behav Evol 57:301–316

    CAS  PubMed  Google Scholar 

  • Wagner HJ (2001b) Sensory brain areas in mesopelagic fishes. Brain Behav Evol 57:117–133

    CAS  PubMed  Google Scholar 

  • Wagner HJ (2002) Sensory brain areas in three families of deep-sea fish (slickheads, eels and grenadiers): comparison of mesopelagic and demersal species. Mar Biol 141:807–817

    Google Scholar 

  • Wagner HJ (2003) Volumetric analysis of brain areas indicates a shift in sensory orientation during development in the deep-sea grenadier Coryphaenoides armatus. Mar Biol 142:791–797

    Google Scholar 

  • Waryani B, Dai R, Zhao Y, Zhang C, Abbasi AR (2013) Surface ultrastructure of the olfactory epithelium of loach fish, Triplophysa dalaica (Kessler, 1876) (Cypriniformes: Balitoridae: Nemacheilinae). Ital J Zool 80:195–203

    Google Scholar 

  • White WT, Last PR (2012) A review of the taxonomy of chondrichthyan fishes: a modern perspective. J Fish Biol 80:901–917

    CAS  PubMed  Google Scholar 

  • Willemet R (2012) Understanding the evolution of mammalian brain structures; the need for a (new) cerebrotype approach. Brain Sci 2:203–224

    PubMed Central  PubMed  Google Scholar 

  • Willemet R (2013) Reconsidering the evolution of brain, cognition, and behavior in birds and mammals. Front Psych. doi:10.3389/fpsyg.2013.00396

    Google Scholar 

  • Wintner SP, Cliff G (1999) Age and growth determinations of the white shark Carcharodon carcharias, from the east coast of South Africa. Fish Bull 97:153–169

    Google Scholar 

  • Yamamoto M (1982) Comparative morphology of the peripheral olfactory organ in teleosts. In: TJ H (ed) Chemoreception in fishes. Elsevier, Amsterdam, pp 39–59

  • Yopak KE (2012a) Neuroecology in cartilaginous fishes: the functional implications of brain scaling. J Fish Biol 80:1968–2023

    CAS  PubMed  Google Scholar 

  • Yopak KE (2012b) The nervous system of cartilaginous fishes. Brain Behav Evol 80:77–79

    PubMed  Google Scholar 

  • Yopak KE, Frank LR (2007) Variation in cerebellar foliation in cartilaginous fishes: ecological and behavioral considerations. Brain Behav Evol 70:210

    Google Scholar 

  • Yopak KE, Frank LR (2009) Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging. Brain Behav Evol 74:121–142

    PubMed  Google Scholar 

  • Yopak KE, Lisney TJ (2012) Allometric scaling of the optic tectum in cartilaginous fishes. Brain Behav Evol 80:108–126

    PubMed  Google Scholar 

  • Yopak KE, Montgomery JC (2008) Brain organization and specialization in deep-sea chondrichthyans. Brain Behav Evol 71:287–304

    PubMed  Google Scholar 

  • Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69:280–300

    PubMed  Google Scholar 

  • Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay BL (2010) A conserved pattern of brain scaling from sharks to primates. Proc Nat Acad Sci 107:12946–12951

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeiske E, Caprio J, Gruber SH (1986) Morphological and electrophysiological studies on the olfactory organ of the lemon shark, Negaprion brevirostris (Poey). In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Indo-pacific fish biology: proceedings of the second international conference on Indo-Pacific Fishes. Ichthyological Society of Japan, Tokyo, pp 381–339

  • Zeiske E, Theisen B, Gruber S (1987) Functional morphology of the olfactory organ of two carcharhinid shark species. Can J Zool 65:2406–2412

    Google Scholar 

  • Zelenitsky DK, Therrien F, Ridgely RC, McGee AR, Witmer LM (2011) Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc Roy Soc B 278:3625–3634

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all those who helped with the collection and provision of specimens as well as the number of institutions that facilitated collections, especially members of the Leigh Marine Laboratory at the University of Auckland, C. Duffy, N. Bagley and the crew of the Tangaraoa for deep-sea specimens (NIWA), and members of the Neuroecology Group at the University of Western Australia, especially R. Kempster and C. Kerr. The authors are very grateful for the comments from two anonymous reviewers and J. Fitzpatrick (University of Manchester) for statistical advice. K.E.Y. acknowledges a Sir Keith Murdoch Fellowship from the American-Australian Association and K.E.Y. and S.P.C. acknowledge an Australian Research Council Discovery Grant (DP120102327) for funding. T.J.L. is grateful for the support of N. Troje (Queen’s University) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara E. Yopak.

Additional information

K. E. Yopak and T. J. Lisney contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 1 kb)

429_2014_705_MOESM2_ESM.nex

Supplementary Figure 1 A nexus file of the phylogenetic tree, showing the evolutionary relationships among the 58 species of sharks, batoids, and holocephalans 5 used in this study. This tree is based on parsimony reconstruction from a range of data sources (e.g. Aschliman et al., 2012; Naylor et al., 2012; Didier, 2012) for the purposes of this study and is not based on molecular data. Since the branch lengths for many taxa were unknown, branches were set to equal 1.0 (Pagel 1992). Unresolved nodes were treated as soft polytomies, with branch lengths between internal nodes set to zero (Purvis and 10 Garland 1993). (TXT 15 kb) (NEX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yopak, K.E., Lisney, T.J. & Collin, S.P. Not all sharks are “swimming noses”: variation in olfactory bulb size in cartilaginous fishes. Brain Struct Funct 220, 1127–1143 (2015). https://doi.org/10.1007/s00429-014-0705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0705-0

Keywords

Navigation