Skip to main content
Log in

The nucleus pararaphales in the human, chimpanzee, and macaque monkey

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The human cerebral cortex and cerebellum are greatly expanded compared to those of other mammals, including the great apes. This expansion is reflected in differences in the size and organization of precerebellar brainstem structures, such as the inferior olive. In addition, there are cell groups unique to the human brainstem. One such group may be the nucleus pararaphales (PRa); however, there is disagreement among authors about the size and location of this nucleus in the human brainstem. The name “pararaphales” has also been used for neurons in the medulla shown to project to the flocculus in the macaque monkey. We have re-examined the existence and status of the PRa in eight humans, three chimpanzees, and four macaque monkeys using Nissl-stained sections as well as immunohistochemistry. In the human we found a cell group along the midline of the medulla in all cases; it had the form of interrupted cell columns and was variable among cases in rostrocaudal and dorsoventral extent. Cells and processes were highly immunoreactive for non-phosphorylated neurofilament protein (NPNFP); somata were immunoreactive to the synthetic enzyme for nitric oxide, nitric oxide synthase, and for calretinin. In macaque monkey, there was a much smaller oval cell group with NPNFP immunoreactivity. In the chimpanzee, we found a region of NPNFP-immunoreactive cells and fibers similar to what was observed in macaques. These results suggest that the “PRa” in the human may not be the same structure as the flocculus-projecting cell group described in the macaque. The PRa, like the arcuate nucleus, therefore may be unique to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atlas SW, Grossman RI, Savino PJ, Schatz NJ, Sergott RC, Bosley TM, Hackney DB, Goldberg HI, Bilaniuk LT, Zimmerman RA (1987) Internuclear ophthalmoplegia: MR-anatomic correlation. Am J Neuroradiol 8(2):243–247

    PubMed  CAS  Google Scholar 

  • Baizer JS (2009) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res 1298:46–56

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Baker JF (2005) Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 164(1):78–91

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Baker JF (2006) Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey. Exp Brain Res 172(1):103–113

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518(6):872–895

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Baker JF, Haas K, Lima R (2007) Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 1176:45–52

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Paolone N, Kramer V, Sherwood C, Hof P (2010) Neurochemical organization of the chimpanzee vestibular brainstem. Soc Neurosci Abs 583.23/WW16

  • Baizer JS, Paolone NA, Witelson SF (2011a) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 1382:45–56

    Article  PubMed  CAS  Google Scholar 

  • Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011b) Neurochemical and structural organization of the principal nucleus of the inferior olive in the human. Anat Rec 294(7):1198–1216

    Article  CAS  Google Scholar 

  • Barmack NH, Qian Z (2002) Activity-dependent expression of calbindin in rabbit floccular Purkinje cells modulated by optokinetic stimulation. Neuroscience 113(1):235–250

    Article  PubMed  CAS  Google Scholar 

  • Berman A (1968) The brain stem of the cat. University of Wisconsin Press, Madison

    Google Scholar 

  • Biondo B, Lavezzi A, Tosi D, Turconi P, Matturri L (2003) Delayed neuronal maturation of the medullary arcuate nucleus in sudden infant death syndrome. Acta Neuropathol 106(6):545–551

    Article  PubMed  Google Scholar 

  • Blanks RH, Precht W (1983) Responses of units in the rat cerebellar flocculus during optokinetic and vestibular stimulation. Exp Brain Res 53(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA, Horn AK (1996) Pathways from cell groups of the paramedian tracts to the floccular region. Ann N Y Acad Sci 781:532–540

    Article  PubMed  Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80(1):72–82

    Article  PubMed  CAS  Google Scholar 

  • Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S (2005) The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 4(2):111–121

    Article  PubMed  Google Scholar 

  • Frohman TC, Galetta S, Fox R, Solomon D, Straumann D, Filippi M, Zee D, Frohman EM (2008) Pearls & Oy-sters: the medial longitudinal fasciculus in ocular motor physiology. Neurology 70(17):e57–e67

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Okamoto K, Nakamura M, Mikami K, Shimada S, Tanaka Y, Nagai K, Arito M, Kurokawa MS, Masuko K, Suematsu N, Koizuka I, Kato T (2009) Proteomic analysis of the rat cerebellar flocculus during vestibular compensation. J Vestib Res 19(3–4):83–94

    PubMed  Google Scholar 

  • Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10(3):159–187

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Fukushima J (1992) The interstitial nucleus of Cajal is involved in generating downward fast eye movement in alert cats. Neurosci Res 15(4):299–303

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Harada C, Fukushima J, Suzuki Y (1990) Spatial properties of vertical eye movement-related neurons in the region of the interstitial nucleus of Cajal in awake cats. Exp Brain Res 79(1):25–42

    PubMed  CAS  Google Scholar 

  • Glickstein M, Waller J, Baizer JS, Brown B, Timmann D (2005) Cerebellum lesions and finger use. Cerebellum 4(3):189–197

    Article  PubMed  Google Scholar 

  • Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47(1):59–80

    Article  PubMed  Google Scholar 

  • Johnston AR, Seckl JR, Dutia MB (2002) Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. J Physiol 545(Pt 3):903–911

    Article  PubMed  CAS  Google Scholar 

  • Karatas M (2009) Internuclear and supranuclear disorders of eye movements: clinical features and causes. Eur J Neurol 16(12):1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Klier EM, Wang H, Crawford JD (2007) Interstitial nucleus of cajal encodes three-dimensional head orientations in Fick-like coordinates. J Neurophysiol 97(1):604–617

    Article  PubMed  Google Scholar 

  • Ksiezak-Reding H, Dickson DW, Davies P, Yen SH (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci USA 84(10):3410–3414

    Article  PubMed  CAS  Google Scholar 

  • LaBossiere E, Glickstein M (1976) Histological processing for the neural sciences. Charles C Thomas, Springfield

    Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235(1):1–25

    Article  PubMed  CAS  Google Scholar 

  • Lavezzi AM, Ottaviani G, Mauri M, Matturri L (2004) Hypoplasia of the arcuate nucleus and maternal smoking during pregnancy in sudden unexplained perinatal and infant death. Neuropathology 24(4):284–289

    Article  PubMed  Google Scholar 

  • Lee VM, Otvos L Jr, Carden MJ, Hollosi M, Dietzschold B, Lazzarini RA (1988) Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 85(6):1998–2002

    Article  PubMed  CAS  Google Scholar 

  • Leigh R, Zee DS (2006) Synthesis of the command for conjugate eye movements. In: Leigh R, Zee DS (eds) The neurology of eye movements. Oxford University Press, Oxford

    Google Scholar 

  • Lisberger SG, Fuchs AF (1978a) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41(3):733–763

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Fuchs AF (1978b) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J Neurophysiol 41(3):764–777

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Pavelko TA, Broussard DM (1994a) Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons. J Neurophysiol 72(2):928–953

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Pavelko TA, Broussard DM (1994b) Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys. J Neurophysiol 72(2):909–927

    PubMed  CAS  Google Scholar 

  • Matturri L, Ottaviani G, Alfonsi G, Crippa M, Rossi L, Lavezzi AM (2004) Study of the brainstem, particularly the arcuate nucleus, in sudden infant death syndrome (SIDS) and sudden intrauterine unexplained death (SIUD). Am J Forensic Med Pathol 25(1):44–48

    Article  PubMed  Google Scholar 

  • Matturri L, Ottaviani G, Benedetti G, Agosta E, Lavezzi AM (2005) Unexpected perinatal death and sudden infant death syndrome (SIDS): anatomopathologic and legal aspects. Am J Forensic Med Pathol 26(2):155–160

    PubMed  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem, 2nd edn. Karger, Basel

    Google Scholar 

  • Ottaviani G, Matturri L, Mingrone R, Lavezzi AM (2006) Hypoplasia and neuronal immaturity of the hypoglossal nucleus in sudden infant death. J Clin Pathol 59(5):497–500

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani G, Mingrone R, Lavezzi AM, Matturri L (2009) Infant and perinatal pulmonary hypoplasia frequently associated with brainstem hypodevelopment. Virchows Arch 454(4):451–456

    Article  PubMed  Google Scholar 

  • Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87(2):912–924

    PubMed  CAS  Google Scholar 

  • Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85(2):169–171

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80(19):6126–6130

    Article  PubMed  CAS  Google Scholar 

  • Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6(3):168–176

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec 288(7):753–775

    Article  Google Scholar 

  • Voogd J, Feirabend H, Schoen J (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The Human Nervous System. Academic Press, San Diego

    Google Scholar 

  • Weaver AH (2005) Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci USA 102(10):3576–3580

    Article  PubMed  CAS  Google Scholar 

  • Weinstock N, Hof P, Sherwood C, Witelson S, Baizer J (2011) The nucleus pararaphales in monkey, man and chimpanzee. Soc Neurosci Abs 183.08/QQ19

  • Witelson SF, McCulloch PB (1991) Premortem and postmortem measurement to study structure with function: a human brain collection. Schizophr Bull 17(4):583–591

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by the Department of Physiology and Biophysics, University at Buffalo and the James S. McDonnell Foundation, grant 22002078 to CCS and PRH and 220020293 to CCS. Raquel Lima, Nicolas Paolone and Vitaly Kramer provided invaluable technical assistance. The authors are grateful to Debra L. Kigar for help in selecting the cases from the Witelson Normal Brain Collection and with the dissections of those cases, and to David B. Bender for the gift of a rhesus monkey brain. The authors also thank Wade Sigurdson of the Confocal Microscope and Flow Cytometry Facility in the School of Medicine and Biomedical Sciences, University at Buffalo for help with fluorescence microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Baizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baizer, J.S., Weinstock, N., Witelson, S.F. et al. The nucleus pararaphales in the human, chimpanzee, and macaque monkey. Brain Struct Funct 218, 389–403 (2013). https://doi.org/10.1007/s00429-012-0403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0403-8

Keywords

Navigation