Skip to main content

Advertisement

Log in

Thinking as the control of imagination: a conceptual framework for goal-directed systems

  • Original Article
  • Published:
Psychological Research PRPF Aims and scope Submit manuscript

Abstract

This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. As an example, when I decide to go 120 km/h with my car, my task consists of maintaining the speedometer around 120 km/h, and to do so I base my actions on perceptual feedback concerning the bar of the speedometer. In the formulation of Powers (1973), I therefore ‘control’ (in a technical sense) my inputs and not my outputs, and execute some action (e.g. accelerate) with the aim of keeping the speedometer bar (the controlled variable) constant.

  2. True intention is not (always) transparent and accessible to introspection: it is a complex self-attribution and self-monitoring process that can dramatically fail, as revealed by studies of delusions of control in schizophrenia (Frith, Blakemore, & Wolpert, 2000; Pacherie, 2008).

  3. Note that the distinctions internal/external and proximal/distal are orthogonal. For instance, I can achieve the distal intention of getting drunk (an internal effect). In our example, however, the distal effect is external.

  4. Not only do abstract goals allow multiple realizations; in parallel, the same action can (be selected to) realize multiple goals at multiple levels of abstraction. Consider how many descriptions we can give of the same motor action of moving our hands quickly toward one another: clapping hands, expressing enthusiasm, show celebration, contribute to the election of a new President, contribute to peace-keeping, etc. As already mentioned, the same representational structure holds for observed goals, as well; see Fig. 1.

  5. See the discussion in Friston (2005) of a related architectural scheme, described in Bayesian terms, in which modules operating at each level introduce constraints for higher level and lower level modules that can be described as priors and prediction errors, respectively, in Bayesian terms. This leads to generative models, whose organizing principle is the reduction of prediction error at all levels.

  6. See Gardenfors (2004) for a discussion of how internal loops can generate hidden variables that explain causal mechanisms, and, for instance, help us perceive the forces behind events.

  7. In this control scheme there is nothing like ‘pure perception’, but imagination is part of the perceptual process. This is due to the fact that the filter component fuses external feedback and internal predictions to obtain an estimated state (which can be perceptual or non perceptual). This operation is important for central cancellation and filtering and for providing stable perception in face of changing environment and moving agent. It is worth noting, however, that this slightly modifies the idea of ‘control of perception’, since one can use predicted inputs instead of actual inputs (if I drive with my eyes closed, I can only imagine the speedometer bar, and I control imagined, self-generated variables and not perceptions).

  8. Although plans can be prepared in simulation and stored in working memory to steer action, there is no guarantee that during execution the same sequence of schemas will be used, since the contextual conditions can vary. For example, I can plan grasping an object with my left hand, and then grasp it with my right hand if it is not longer in reach of left hand. At the same time, simulations can be quite abstract and involve effector-independent representations. Anyway, in this model planning always influence action execution since re-enacts schemas and primes them and their stimuli dimensions.

References

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–149.

    PubMed  Google Scholar 

  • Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Natural Neuroscience, 11(9), 1109–1116.

    Article  Google Scholar 

  • Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.) Handbook of physiology—the nervous system II. Motor control (pp. 1449–1480). Bethesda: American Physiological Society.

  • Arbib, M. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28, 105–121.

    PubMed  Google Scholar 

  • Arbib, M., Bonaiuto, J., Jacobs, S., & Frey, S. (2009). Tool use and the distalization of the end-effector (this issue).

  • Baddeley, A., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), The Psychology of Learning and Motivation (pp. 47–89). London: Academic.

  • Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.

    Article  PubMed  Google Scholar 

  • Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54, 462–479.

    Article  Google Scholar 

  • Barkley, R. A. (2001). The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychology Review, 11(1), 1–29.

    Article  PubMed  Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–600.

    PubMed  Google Scholar 

  • Barsalou, L. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    Article  PubMed  Google Scholar 

  • Berridge, K. (2004). Motivation concepts in behavioral neuroscience. Physiology and Behavior, 81(2), 179–209.

    Article  PubMed  Google Scholar 

  • Berthoz, A. (2000). The brain’s sense of movement. Cambridge: Harvard University Press.

  • Blakemore, S. J., Goodbody, S. J., & Wolpert, D. M. (1998). Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience, 18(18), 7511–7518.

    PubMed  Google Scholar 

  • Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.

    Article  PubMed  Google Scholar 

  • Brass, M., Bekkering, H., Wohlschlger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial and imitative cues. Brain and Cognition, 44, 124–143.

    Article  PubMed  Google Scholar 

  • Bratman, M. (1987). Intentions, plans, and practical reason. Cambridge: Harvard University Press.

  • Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev, 95, 49–90.

    Article  PubMed  Google Scholar 

  • Burgess, N., & Hitch, G. (2005). Computational models of working memory: Putting long-term memory into context. Trends in Cognitive Sciences, 9, 535–541.

    Article  PubMed  Google Scholar 

  • Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290–298.

    Article  PubMed  Google Scholar 

  • Castelfranchi, C. (2000). Through the agents’ minds: Cognitive mediators of social action. Mind & Society, 1, 109–140.

    Article  Google Scholar 

  • Cisek, P. (2005). Neural representations of motor plans, desired trajectories, and controlled objects. Cognitive Processing, 6, 15–24.

    Article  Google Scholar 

  • Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical transactions of the Royal Society of London. Series B, 362, 1585–1599.

    Article  PubMed  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814.

    Article  PubMed  Google Scholar 

  • Cotterill, R. (2001). Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: Possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64, 1–33.

    Article  PubMed  Google Scholar 

  • Craighero, L., Fadiga, L., Rizzolatti, G., & Ulmita, C. (1999). Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance, 25, 1673–1692.

    Article  PubMed  Google Scholar 

  • Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Damasio, A. R. (1994). Descartes’ error: emotion, reason and the human brain. New York: Grosset/Putnam.

    Google Scholar 

  • Daw, N.D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.

    Article  PubMed  Google Scholar 

  • Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079(1), 4–14.

    Article  PubMed  Google Scholar 

  • Demiris, Y., & Khadhouri, B. (2005). Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal, 54, 361–369.

    Article  Google Scholar 

  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4, 423–431.

    Article  PubMed  Google Scholar 

  • Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.

    Article  PubMed  Google Scholar 

  • Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A tms study. European Journal of Neuroscience, 15, 399–402.

    Article  PubMed  Google Scholar 

  • Fagg, A., & Arbib, M. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11(7–8), 1277–1303.

    Article  PubMed  Google Scholar 

  • Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action-related stimulus dimensions. Psychological Research, 71(1), 22–29.

    Article  PubMed  Google Scholar 

  • Fiebach, C. J., & Schubotz, R. I. (2006). Dynamic anticipatory processing of hierarchical sequential events: A common role for broca’s area and ventral premotor cortex across domains? Cortex, 42(4):499–502.

    Article  PubMed  Google Scholar 

  • Flanagan, J., & Johansson, R. (2003). Action plans used in action observation. Nature, 424, 769–771.

    Article  PubMed  Google Scholar 

  • Fogassi, L., Ferrari, P., Chersi, F., Gesierich, B., Rozzi, S., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.

    Article  PubMed  Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.

    Article  PubMed  Google Scholar 

  • Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355(1404), 1771–1788.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Gallese, V. (2001). The ’shared manifold’ hypothesis. From mirror neurons to empathy. Journal of Consciousness Studies, 8, 5–87.

    Google Scholar 

  • Gallese, V., & Metzinger, T. (2003). Motor ontology: The representational reality of goals, actions, selves. Philosophical Psychology, 13(3), 365–388.

    Article  Google Scholar 

  • Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403.

    Article  PubMed  Google Scholar 

  • Gardenfors, P. (2004). Emulators as sources of hidden cognitive variables. The Behavioral and Brain Sciences, 27(3), 403.

    Article  Google Scholar 

  • Gardenfors, P. (2007). Mind-reading as control theory. European Review, 15(2), 223–240.

    Article  Google Scholar 

  • Gibson, J. (1979). The ecological approach to visual perception. Mahwah: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Glenberg, A. (1997). What memory is for. Behavioral and Brain Sciences, 20, 1–55.

    PubMed  Google Scholar 

  • Gollwitzer, P. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493–503.

    Article  Google Scholar 

  • Gregory, R. L. (1969). On how so little information controls so much behavior. In C. H. Waddington (Ed.), Towards a Theoretical Biology. 2, Sketches. Edinburgh: Edinburgh University Press.

  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, perception. Behavioral and Brain Sciences, 27(3), 377–96.

    PubMed  Google Scholar 

  • Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.

    Article  PubMed  Google Scholar 

  • Hamilton, A. F. d. C. & Grafton, S. T. (2007). The motor hierarchy: From kinematics to goals and intentions. In P. Haggard, Y. Rossetti, M. Kawato (Eds.), Sensorimotor foundations of higher cognition. NY: Oxford University Press.

  • Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical mosaic for movement generation. In T. Ono, G. Matsumoto, R. Llinas, A. Berthoz, H. Norgren, R. Tamura (Eds.), Excepta medica international coungress series. Amsterdam: Elsevier.

    Google Scholar 

  • Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences, 6, 242–247.

    Article  PubMed  Google Scholar 

  • Hoffmann, J., Stöcker, C., & Kunde, W. (2004). Anticipatory control of actions. International Journal of Sport and Exercise Psychology, 2, 346–361.

    Google Scholar 

  • Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus-response translation. In S. Monsell, J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes (pp. 247–273). Cambridge: MIT Press.

    Google Scholar 

  • Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Science, 24(5), 849–78.

    Google Scholar 

  • Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92(6), 427–437.

    Article  PubMed  Google Scholar 

  • Hurley, S. (2008). The shared circuits model (scm): How control, mirroring, simulation can enable imitation, deliberation, mindreading. Behavioral and Brain Sciences, 31, 1–22.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol, 3(3), e79.

    Article  PubMed  Google Scholar 

  • Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16, 448–450.

    Article  PubMed  Google Scholar 

  • Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9(1), 21–25.

    Article  PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology. New York: Dover Publications.

    Google Scholar 

  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. The Behavioral and Brain Sciences, 17:187–245.

    Article  Google Scholar 

  • Jeannerod, M. (1997). The cognitive neuroscience of action (pp. 173–174). Oxford: Blackwell.

    Google Scholar 

  • Jeannerod, M. (1999). To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology, 52A(1), 1–29.

    Article  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, S103–S109.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (2006). Motor cognition. NY: Oxford University Press.

  • Jordan, J. S. (2003). Emergence of self and other in perception and action. Consciousness and Cognition, 12, 633–646.

    Article  PubMed  Google Scholar 

  • Jordan, M. I., & Rumelhart, D. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.

    Article  Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.

    Article  PubMed  Google Scholar 

  • Kilner, J., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.

    Article  PubMed  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends Cogn Sci, 11(6), 229–235.

    Article  PubMed  Google Scholar 

  • Konidaris, G., & Barto, A. (2007). Building portable options: Skill transfer in reinforcement learning. In Proceedings of the twentieth international joint conference on artificial intelligence (IJCAI-07).

  • Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2), 72–79.

    Article  PubMed  Google Scholar 

  • Land, M. F. (2006). Eye movements and the control of actions in everyday life. Progress in Retinal and Eye Research, 25, 296–324.

    Article  PubMed  Google Scholar 

  • Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379, 649–652.

    Article  PubMed  Google Scholar 

  • McClure, S., Laibson, D., Loewenstein, G., & Cohen, J. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 304, 503–507.

    Article  Google Scholar 

  • McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel competition in decision making. Psychological Science, 19(1), 22–24.

    Article  PubMed  Google Scholar 

  • Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–53.

    PubMed  Google Scholar 

  • Miall, R. C. (2003). Connecting mirror neurons and forward models. Neuroreport, 14(17), 2135–2137.

    Article  PubMed  Google Scholar 

  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.

    Article  PubMed  Google Scholar 

  • Miceli, M., & Castelfranchi, C. (2002). Modelling motivational representations. Cognitive Science Quarterly, 2, 233–247.

    Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, clinical studies. Brain Cognition, 42(2), 183–200.

    Article  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston.

    Book  Google Scholar 

  • Moller, R., & Schenck, W. (2008). Bootstrapping cognition from behavior—a computerized thought experiment. Cognitive Science, 32(3), 504–542.

    Google Scholar 

  • Nishimoto, R., & Tani, J. (2009). Development process of functional hierarchy for actions and motor imagery: A constructivist view from synthetic neuro-robotics study (this issue).

  • Niv, Y., Joel, D., & Dayan, P. (2006). A normative perspective on motivation. Trends in Cognitive Science, 8, 375–381.

    Article  Google Scholar 

  • Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Cognitive Brain Research, 22, 129–151.

    Article  PubMed  Google Scholar 

  • Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Network, 19(3), 254–271.

    Article  Google Scholar 

  • Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107, 179–217.

    Article  PubMed  Google Scholar 

  • Pezzulo, G. (2008a). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18(2), 179–225.

    Article  Google Scholar 

  • Pezzulo, G. (2008b). A study of off-line uses of anticipation. In M. Asada, J. Tani, J. Hallam, J.-A. Meyer (Eds.), Proceedings of SAB 2008. LNAI, vol 5040 (pp. 372–382). Berlin: Springer.

  • Pezzulo, G., & Castelfranchi, C. (2007). The symbol detachment problem. Cognitive Processing, 8(2), 115–131.

    Article  PubMed  Google Scholar 

  • Pham, L. B., & Taylor, S. E. (1999). From thought to action: Effects of process- versus outcome-based mental simulations on performance. Personality and Social Psychology Bulletin, 25, 250–260.

    Article  Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child. Ballentine.

  • Powers, W. T. (1973). Behavior: The control of perception. Hawthorne, NY: Aldine.

    Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.

    Article  Google Scholar 

  • Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445(7130), 919–921.

    Article  PubMed  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.

    Article  PubMed  Google Scholar 

  • Rick, S., & Loewenstein, G. (2008). Intangibility in intertemporal choice. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1511), 3813–3824.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. ii. area f5 and the control of distal movements. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, 71(3), 491–507.

    PubMed  Google Scholar 

  • Rizzolatti, G., Riggio, L., & Sheliga, B. (1994). Space and selective attention. In C. Umilta, M. Moscovitch (Eds.) Attention and performance XV (pp. 231–265). Cambridge, Mass: MIT Press.

    Google Scholar 

  • Rochat, P. (2007). Intentional action arises from early reciprocal exchanges. Acta Psychologica, 124(1), 8–25.

    Article  PubMed  Google Scholar 

  • Rolls, E. T. (1999). The brain and emotion. New York: Oxford University Press.

    Google Scholar 

  • Rosenbaum, D. (1991). Human motor control. New York: Academic Press.

    Google Scholar 

  • Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001a). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453–70.

    Article  PubMed  Google Scholar 

  • Rosenbaum, D. A., Meulenbroek, R. J., & Vaughan, J. (2001b). Planning reaching and grasping movements: Theoretical premises and practical implications. Motor Control, 2, 99–115.

    Google Scholar 

  • Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 18–24.

    Article  Google Scholar 

  • Scheier, M. F., & Carver, C. S. (2003). Self-regulatory processes and responses to health threats: Effects of optimism on well-being. In J. Suls, K. Wallston (Eds.), Social psychological foundations of health (pp. 395–428). Oxford: Blackwell.

    Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.

    Article  Google Scholar 

  • Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211–218.

    Article  PubMed  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.

    PubMed  Google Scholar 

  • Stelmach, G., & Diggles, V. (1982). Control theories in motor behavior. Acta Psychologica, 50, 83–105.

    Article  Google Scholar 

  • Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel and is it unique to humans? Behavioral and Brain Sciences, 30(3), 299–313.

    PubMed  Google Scholar 

  • Synofzik, M., Thier, P., & Lindner, A. (2006). Movements depends on an adaptable prediction about the sensory action outcome. J Neurophysiology, 96, 1592–1601.

    Article  Google Scholar 

  • Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F., & Perani, D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17(2), 273–281.

    Article  PubMed  Google Scholar 

  • Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185–203.

    Article  PubMed  Google Scholar 

  • Umiltà, M., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., Jezzini, A., Gallese, V., & Rizzolatti, G. (2008). How pliers become fingers in the monkey motor system. Proceedings of the National Academy of Science, 105, 2209–2213.

    Article  Google Scholar 

  • von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: L. Voss.

    Google Scholar 

  • von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Science, 8(6), 266–272.

    Article  Google Scholar 

  • von Holst, E., & Mittelstaedt, H. (1950). Das reafferenzprinzip. Naturwissenschaften, 37:464–476.

    Article  Google Scholar 

  • Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.

    Article  PubMed  Google Scholar 

  • Wohlschlager, A., Engbert, K., & Haggard, P. (2003a). Intentionality as a constituting condition for the own self-and other selves. Consciousness and Cognition, 12(4), 708–716.

    Article  PubMed  Google Scholar 

  • Wohlschlager, A., Gattis, M., & Bekkering, H. (2003b). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society of London, 358, 501–515.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., & Ghahramani, Z. (2004). Computational motor control. Science, 269, 1880–1882.

    Article  Google Scholar 

  • Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci, 358(1431), 593–602.

    Article  PubMed  Google Scholar 

  • Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273–293.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community, project HUMANOBS: Humanoids That Learn Socio-Communicative Skills Through Observation (FP7-231453). The authors would like to thank Michael Arbib, Anna Borghi, and Elisabeth Pacherie for useful comments and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pezzulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezzulo, G., Castelfranchi, C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychological Research 73, 559–577 (2009). https://doi.org/10.1007/s00426-009-0237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-009-0237-z

Keywords

Navigation