Skip to main content
Log in

B genome specific polymorphism in the TdDRF1 gene is in relationship with grain yield

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A and B genome copies of DRF1 gene in durum wheat were isolated and sequenced using gene variability. B genome specific polymorphism resulted, in a RIL population, in relationship with grain yield mainly in drought condition.

Drought tolerance is one of the main components of yield potential and stability, and its improvement is a major challenge to breeders. Transcription factors are considered among the best candidate genes for developing functional markers, since they are components of the signal transduction pathways that coordinate the expression of several downstream genes. Polymorphisms of the Triticum durum dehydration responsive factor 1 (TdDRF1) gene that belongs to DREB2 transcription factor family were identified and specifically assigned to the A or B genome. A panel of primers was derived to selectively isolate the corresponding gene copies. These molecular information were also used to develop a new molecular marker: an allele-specific PCR assay discriminating two genotypes (Mohawk and Cocorit) was developed and used for screening a durum wheat recombinant inbred line population (RIL-pop) derived from the above genotypes. Phenotypic data from the RIL-pop grown during two seasons, under different environmental conditions, adopting an α-lattice design with two repetitions, were collected, analyzed and correlated with molecular data from the PCR assay. A significant association between a specific polymorphism in the B genome copy of the TdDRF1 gene and the grain yield in drought conditions were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP2:

Apetala2

DRF1:

Dehydration responsive factor 1

RIL:

Recombinant inbred line

SSR:

Simple sequence repeat

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41(W1):W340–W348

    Article  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Di Bianco D, Thiyagarajan K, Latini A, Cantale C, Felici F, Galeffi P (2011) Exploring the genetic diversity of the TdDRF1 gene in durum wheat and its wild relatives. Plant Genet Res 9(2):247–250

    Article  Google Scholar 

  • Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394. doi:10.1093/nar/gkv332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Forster BP, Ellis RP, Moir J, Talamè V, Sanguineti MC, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy SAEE, Bahri H, El Ouahabi M, Zoumarou-Wallis N, El-Fellah M, Ben Salem M (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168

    Article  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750

    Article  CAS  Google Scholar 

  • Grzesiak M, Rzepka A, Hura T, Hura K, Skoczowski A (2007) Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance. Photosynthetica 45:280–287

    Article  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48(5–6):501–510

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protoc 10:845–858

    Article  CAS  Google Scholar 

  • Kim J (2007) Perception, transduction, and networks in cold signaling. J Plant Biol 50:139–147

    Article  CAS  Google Scholar 

  • Latini A, Rasi C, Sperandei M, Cantale C, Iannetta M, Dettori M, Ammar K, Galeffi P (2007) Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions. Ann Appl Biol 150:187–195

    Article  CAS  Google Scholar 

  • Latini A, Sperandei M, Cantale C, Arcangeli C, Ammar K, Galeffi P (2013) Variability and expression profile of the TdDRF1 gene in four cultivars of durum wheat and one triticale under moderate water stress conditions. Planta 237:967–978

    Article  CAS  PubMed  Google Scholar 

  • Lauer JG, Bijl CG, Grusak MA, Baenziger PS, Boote K, Lingle S, Carter T, Kaeppler S, Boerma R, Eizenga G, Carter P, Goodman M, Nafziger E, Kidwell K, Mitchell R, Edgerton MD, Quesenberry K, Willcox MC (2012) The scientific grand challenges of the 21st century for the crop science society of America. Crop Sci 52(3):1003–1010

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wollfinger RD (1996) SAS system for mixed models. SAS Institute Inc., Cary

    Google Scholar 

  • Marzin S, Mihaly R, Pauk J, Schweizer P (2008) A transient assay system for the assessment of cell-autonomous gene function in dehydration-stressed barley. J Exp Bot 59:3359–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JM (2000) Increases in grain yield of wheat by breeding for an osmoregulation gene: relationship to water supplies and evaporative demand. Aust J Agric Res 51:971–978

    Article  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860. doi:10.1007/s00122-016-2743-x

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:321–326

    Article  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchoni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei B, Jing R, Wang C, Chen J, Mao X, Chang X, Jia J (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breed 23:12–22

    Article  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

Authors are really grateful to Marco Dettori (AGRIS, IT) for his valuable suggestions during the manuscript preparation; to Serena Guida (AIFA, IT) and Arianna Latini (ENEA, IT) for their constructive criticisms; to Cristina Prisco (Bio-Fab Research srl, IT) for her technical assistance in the sequence project of the TdDRF1 gene; to Marian Shields for revision of English text; to Giulio Marconi (ENEA library service) for constant assistance. This study was partially supported by: the High Relevance Mexico–Italy Project of the Italian Foreign Affairs Ministry; COST FA0604 Tritigen Project and ERA-NET in Life Science Project (EU 7FP). DDB was supported by an International Doctoral Fellowship from Scuola Superiore Sant’ Anna (Pisa—IT) and Fellowships of the Government of Mexico, “Secretaría de Relaciones Exteriores” for three stages at CIMMYT (Mexico); KT was supported by ENEA International Fellowship for 2 years postdoc position at ENEA Casaccia Research Centre (IT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Galeffi.

Additional information

We dedicate this paper to the memory of Alfonso Garcia (CIMMYT), who gave his highly professional contribution to the field experiments.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantale, C., Di Bianco, D., Thiyagarajan, K. et al. B genome specific polymorphism in the TdDRF1 gene is in relationship with grain yield. Planta 247, 459–469 (2018). https://doi.org/10.1007/s00425-017-2799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2799-0

Keywords

Navigation