Skip to main content
Log in

Grid alignment in entorhinal cortex

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The spatial responses of many of the cells recorded in all layers of rodent medial entorhinal cortex (mEC) show mutually aligned grid patterns. Recent experimental findings have shown that grids can often be better described as elliptical rather than purely circular and that, beyond the mutual alignment of their grid axes, ellipses tend to also orient their long axis along preferred directions. Are grid alignment and ellipse orientation aspects of the same phenomenon? Does the grid alignment result from single-unit mechanisms or does it require network interactions? We address these issues by refining a single-unit adaptation model of grid formation, to describe specifically the spontaneous emergence of conjunctive grid-by-head-direction cells in layers III, V, and VI of mEC. We find that tight alignment can be produced by recurrent collateral interactions, but this requires head-direction (HD) modulation. Through a competitive learning process driven by spatial inputs, grid fields then form already aligned, and with randomly distributed spatial phases. In addition, we find that the self-organization process is influenced by any anisotropy in the behavior of the simulated rat. The common grid alignment often orients along preferred running directions (RDs), as induced in a square environment. When speed anisotropy is present in exploration behavior, the shape of individual grids is distorted toward an ellipsoid arrangement. Speed anisotropy orients the long ellipse axis along the fast direction. Speed anisotropy on its own also tends to align grids, even without collaterals, but the alignment is seen to be loose. Finally, the alignment of spatial grid fields in multiple environments shows that the network expresses the same set of grid fields across environments, modulo a coherent rotation and translation. Thus, an efficient metric encoding of space may emerge through spontaneous pattern formation at the single-unit level, but it is coherent, hence context-invariant, if aided by collateral interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry C, Ó Keefe J, Burgess N (2009) Effect of novelty on grid cell firing. Society for Neuroscience abstract 101.24

  • Boccara CN, Sargolini F, Thoresen VHH, Solstad T, Witter MP, Moser EI, Moser MBB (2010) Grid cells in pre- and parasubiculum. Nat Neurosci 13(8): 987–994

    Article  PubMed  CAS  Google Scholar 

  • Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332: 595–599

    Article  PubMed  CAS  Google Scholar 

  • Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5(2): e1000291

    Article  PubMed  Google Scholar 

  • Burgess N (2008) Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus 18(12): 1157–1174

    Article  PubMed  Google Scholar 

  • Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9): 901–912

    Article  Google Scholar 

  • Colgin LL, Moser EI, Moser MB (2008) Understanding memory through hippocampal remapping. Trends Neurosci 31(9): 469–477

    Article  PubMed  CAS  Google Scholar 

  • Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser MBB, Moser EI (2009) Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci 12(10): 1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Dhillon A, Jones RSG (2000) Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99(3): 413–422

    Article  PubMed  CAS  Google Scholar 

  • Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location. J Neurosci 28(27): 6858–6871

    Article  PubMed  CAS  Google Scholar 

  • Fuhs M, Touretzky D (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26: 4266–4276

    Article  PubMed  CAS  Google Scholar 

  • Fyhn M, Molden S, Witter M, Moser E, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305: 1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Fyhn M, Hafting T, Treves A, Moser MB, Moser E (2007) Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446: 190–194

    Article  PubMed  CAS  Google Scholar 

  • Garden DL, Dodson PD, O’Donnell C, White MD, Nolan MF (2008) Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 60(5): 875–889

    Article  PubMed  CAS  Google Scholar 

  • Giocomo LM, Zilli EA, Fransén E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315(5819): 1719–1722

    Article  PubMed  CAS  Google Scholar 

  • Giocomo LM, Moser MB, Moser EI (2011) Computational models of grid cells. Neuron 71(4): 589–603

    Article  PubMed  CAS  Google Scholar 

  • Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a twisted torus topology. Int J Neural Syst 17(4): 231–240

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MBB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052): 801–806

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18(12): 1213–1229

    Article  PubMed  Google Scholar 

  • Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332(6029): 592–595

    Article  PubMed  CAS  Google Scholar 

  • Kropff E, Treves A (2008) The emergence of grid cells: intelligent design or just adaptation?. Hippocampus 18: 1256–1269

    Article  PubMed  Google Scholar 

  • Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MBB (2010) Development of the spatial representation system in the rat. Science 328(5985): 1576–1580

    Article  PubMed  CAS  Google Scholar 

  • McNaughton B, Battaglia F, Jensen O, Moser E, Moser MB (2006) Path integration and the neural basis of the “cognitive map”. Nat Rev Neurosci 7: 663–678

    Article  PubMed  CAS  Google Scholar 

  • Milford MJ, Wiles J, Wyeth GF (2010) Solving navigational uncertainty using grid cells on robots. PLoS Comput Biol 6(11): e1000995

    Article  PubMed  Google Scholar 

  • Navratilova Z, Giocomo LM, Fellous JMM, Hasselmo ME, McNaughton BL (2011) Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus 22: 772–789

    Article  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1): 171–175

    Article  PubMed  Google Scholar 

  • Petkovic MS (2009) Famous puzzles of great mathematicians. American Mathematical Society, College Station

    Google Scholar 

  • Rolls E, Stringer S, Elliot T (2006) Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network 15: 447–465

    Article  Google Scholar 

  • Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17(15): 5900–5920

    PubMed  CAS  Google Scholar 

  • Samu D, Erős P, Ujfalussy B, Kiss T (2009) Robust path integration in the entorhinal grid cell system with hippocampal feed-back. Biol Cybern 101: 19–34

    Article  PubMed  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, Mcnaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762. http://www.ntnu.no/cbm/gridcell. Accessed May 2011

    Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Si B, Treves A (2009) The role of competitive learning in the generation of DG fields from EC inputs. Cogn Neurodyn 3(2): 177–187

    Article  PubMed  Google Scholar 

  • Si B, Herrmann JM, Pawelzik K (2007) Gain-based exploration: From multi-armed bandits to partially observable environments. In: proceedings of the international conference on natural computation, Haikou, pp 177–182

  • Solstad T, Moser E, Einevoll G (2006) From grid cells to place cells: a mathematical model. Hippocampus 16: 1026–1031

    Article  PubMed  Google Scholar 

  • Stensland H, Kirkesola T, Moser E, Moser MB (2010) Orientational geometry of entorhinal grid cells. Society for Neuroscience abstract 101.14

  • Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2): 420–435

    PubMed  CAS  Google Scholar 

  • Treves A (2003) Computational constraints that may have favoured the lamination of sensory cortex. J Comput Neurosci 14: 271–282

    Article  PubMed  Google Scholar 

  • van Haeften T, Baks-Te-Bulte L, Goede PH, Wouterlood FG, Witter MP (2003) Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus 13(8): 943–952

    Article  PubMed  Google Scholar 

  • Walters DM, Stringer SM (2010) Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants. Biol Cybern 103: 21–41

    Article  PubMed  CAS  Google Scholar 

  • Wills TJ, Cacucci F, Burgess N, O’Keefe J (2010) Development of the hippocampal cognitive map in preweanling rats. Science 328(5985): 1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1998) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci 16(6): 2112–2126

    PubMed  CAS  Google Scholar 

  • Zilli EA, Hasselmo ME (2010) Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. J Neurosci 30(41): 13850–13860

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailu Si.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, B., Kropff, E. & Treves, A. Grid alignment in entorhinal cortex. Biol Cybern 106, 483–506 (2012). https://doi.org/10.1007/s00422-012-0513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0513-7

Keywords

Navigation