Skip to main content
Log in

Neuronavigation and surgery of intracerebral tumours

  • REVIEW
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Approximately four decades after the successful clinical introduction of framebased stereotactic neurosurgery by Spiegel and Wycis, frameless stereotaxy emerged to enable more elaborate image guidance in open neurosurgical procedures. Frameless stereotaxy, or neuronavigation, relies on one of several different localizing techniques to determine the position of an operative instrument relative to the surgical field, without the need for a coordinate frame rigidly fixed to the patients’ skull. Currently, most systems are based on the optical triangulation of infrared light sources fixed to the surgical instrument.

In its essence, a navigation system is a three-dimensional digitiser that correlates its measurements to a reference data set, i.e. a preoperatively acquired CT or MRI image stack. This correlation is achieved through a patient-to-image registration procedure resulting in a mathematical transformation matrix mapping each position in ‘world space’ onto ‘image space’. Thus, throughout the remainder of the surgical procedure, the position of the surgical instrument can be demonstrated on a computer screen, relative to the CT or MRI images.

Though neuronavigation has become a routinely used addition to the neurosurgical armamentarium, its impact on surgical results has not yet been examined sufficiently. Therefore, the surgeon is left to decide on a case-by-case basis whether to perform surgery with or without neuronavigation. Future challenges lie in improvement of the interface between the surgeon and the neuronavigator and in reducing the brainshift error, i.e. inaccuracy introduced by changes in tissue positions after image acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–d
Fig. 3a–c
Fig. 4a–c
Fig. 5a–f
Fig. 6a–b
Fig. 7

Similar content being viewed by others

References

  1. Altukhov NV (1891) Encephalometric investigations of the brain relative to the sex, age and skull indexes. Moscow

  2. Apuzzo ML, Chandrasoma PT, Cohen D, Zee CS, Zelman V (1987) Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery 20: 930–937

    PubMed  CAS  Google Scholar 

  3. Barnett GH, Kormos DW, Steiner CP, Weisenberger J (1993) Intraoperative localization using an armless, frameless stereotactic wand. Technical note J Neurosurg 78: 510–514

    PubMed  CAS  Google Scholar 

  4. Barnett GH, Kormos DW, Steiner CP, Weisenberger J (1993) Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging Neurosurgery 33: 674–678

    PubMed  CAS  Google Scholar 

  5. Berger MS (1996) The impact of technical adjuncts in the surgical management of cerebral hemispheric low-grade gliomas of childhood J Neurooncol 28(2–3): 129–155

    PubMed  CAS  Google Scholar 

  6. Bergstrom M, Greitz J (1976) Stereotaxic computed tomography AJR 127: 167–170

    PubMed  CAS  Google Scholar 

  7. Black PM, Alexander E III, Martin C, Moriarty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit Neurosurgery 45: 423–431

    Article  PubMed  CAS  Google Scholar 

  8. Black PM, Moriarty T, Alexander E, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications Neurosurgery 41: 831–842

    Article  PubMed  CAS  Google Scholar 

  9. Bohinski RJ, Kokkino AK, Warnick RE, Gaskill-Shipley MF, Kormos DW, Lukin RR, Tew JM (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection Neurosurgery 48: 731–742

    Article  PubMed  CAS  Google Scholar 

  10. Bourgeois G, Magnin M, Morel A, Sartoretti S, Huisman T, Tuncdogan E, Meier D, Jeanmonod D (1999) Accuracy of MRI-guided stereotactic thalamic functional neurosurgery Neuroradiology 41: 636–645

    Article  PubMed  CAS  Google Scholar 

  11. Brown RA (1979) A stereotactic head frame for use with CT body scanners Invest Radiol 14(4): 300–304

    Article  PubMed  CAS  Google Scholar 

  12. Burchiel KJ, Nguyen TT, Coombs BD, Szumoski J (1996) MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames Stereotact Funct Neurosurg 66: 123–136

    PubMed  CAS  Google Scholar 

  13. Carney AS, Patel N, Baldwin DL, Coakham HB, Sandeman DR (1996) Intra-operative image guidance in otolaryngology–the use of the ISG viewing wand J Laryngol Otol 110: 322–327

    PubMed  CAS  Google Scholar 

  14. Clarke RH, Horsley RV (1906) On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum) BMJ 2: 1799–1800

    Google Scholar 

  15. Couldwell WT, Apuzzo ML (1990) Initial experience related to the use of the Cosman-Roberts-Wells stereotactic instrument. Technical note J Neurosurg 72: 145–148

    PubMed  CAS  Google Scholar 

  16. Dorward NL, Alberti O, Palmer JD, Kitchen ND, Thomas DG (1999) Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note J Neurosurg 90: 160–168

    PubMed  CAS  Google Scholar 

  17. Dorward NL, Alberti O, Velani B, Gerritsen FA, Harkness WF, Kitchen ND, Thomas DG (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation J Neurosurg 88: 656–662

    PubMed  CAS  Google Scholar 

  18. Doshi PK, Lemmieux L, Fish DR, Shorvon SD, Harkness WH, Thomas DG (1995) Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand Acta Neurochir Suppl (Wien ) 64: 49–53

    CAS  Google Scholar 

  19. Ferrant M, Nabavi A, Macq B, Black PM, Jolesz FA, Kikinis R, Warfield SK (2002) Serial registration of intraoperative MR images of the brain Med Image Anal 6: 337–359

    Article  PubMed  Google Scholar 

  20. Freysinger W, Gunkel AR, Bale R, Vogele M, Kremser C, Schon G, Thumfart WF (1998) Three-dimensional navigation in otorhinolaryngological surgery with the viewing wand Ann Otol Rhinol Laryngol 107(11 Pt 1): 953–958

    PubMed  CAS  Google Scholar 

  21. Galloway RLJ, Maciunas RJ (93) An articulated arm for neurosurgical use. In: Maciunas RJ (ed) Interactive Image-Guided Surgery. American Association of Neurological Surgeons, pp 159–168

  22. Germano IM, Villalobos H, Silvers A, Post KD (1999) Clinical use of the optical digitizer for intracranial neuronavigation Neurosurgery 45: 261–269

    Article  PubMed  CAS  Google Scholar 

  23. Gildenberg PL (82) Computerized tomography and stereotactic surgery. In: Spiegel EA (ed) Guided Brain Operations. Karger, Basel, pp 24–34

  24. Gildenberg PL (1987) Whatever happened to stereotactic surgery? Neurosurgery 20(6): 983–987

    PubMed  CAS  Google Scholar 

  25. Gildenberg PL, Franklin PO (1985) Survey of CT-guided stereotactic surgery Appl Neurophysiol 48: 477–480

    PubMed  CAS  Google Scholar 

  26. Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF (1995) Clinical use of a frameless stereotactic arm: results of 325 cases J Neurosurg 83: 197–205

    PubMed  CAS  Google Scholar 

  27. Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F, Lango T, Unsgard G (2000) SonoWand, an ultrasound-based neuronavigation system Neurosurgery 47: 1373–1379

    Article  PubMed  CAS  Google Scholar 

  28. Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography Comput Aided Surg 3(4): 166–173

    Article  PubMed  CAS  Google Scholar 

  29. Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases Neurosurgery 44: 97–104

    Article  PubMed  CAS  Google Scholar 

  30. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms Neurosurgery 48: 799–809

    Article  PubMed  CAS  Google Scholar 

  31. Hall WA (1998) The safety and efficacy of stereotactic biopsy for intracranial lesions Cancer 82: 1749–1755

    Article  PubMed  CAS  Google Scholar 

  32. Hata N, Dohi T, Iseki H, Takakura K (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration Neurosurgery 41: 608–613

    Article  PubMed  CAS  Google Scholar 

  33. Hecaen H, Talairach J, David M, Dell MD (1949) Coagulation limitées du thalamus dans les algies du syndrome thalamique Rev Neurol (Paris) 81: 917–931

    Google Scholar 

  34. Heilbrun MP, Roberts TS, Apuzzo ML, Wells THJ, Sabshin JK (1983) Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system J Neurosurg 59: 217–222

    PubMed  CAS  Google Scholar 

  35. Henderson JM, Smith KR, Bucholz RD (1994) An accurate and ergonomic method of registration for image-guided neurosurgery Comput Med Imaging Graph 18: 273–277

    Article  PubMed  CAS  Google Scholar 

  36. Hill DL, Maurer CRJ, Maciunas RJ, Barwise JA, Fitzpatrick JM, Wang MY (1998) Measurement of intraoperative brain surface deformation under a craniotomy Neurosurgery 43: 514–526

    Article  PubMed  CAS  Google Scholar 

  37. Hirschberg H, Unsgaard G (1997) Incorporation of ultrasonic imaging in an optically coupled frameless stereotactic system Acta Neurochir Suppl (Wien) 68: 75–80

    CAS  Google Scholar 

  38. Horstmann GA, Reinhardt HF (1994) Ranging accuracy test of the sonic microstereometric system Neurosurgery 34: 754–755

    PubMed  CAS  Google Scholar 

  39. Jodicke A, Deinsberger W, Erbe H, Kriete A, Boker DK (1998) Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing Minim Invasive Neurosurg 41: 13–19

    PubMed  CAS  Google Scholar 

  40. Kaminsky J, Brinker T, Samii A, Arango G, Vorkapic P, Samii M (1999) Technical considerations regarding accuracy of the MKM navigation system. An experimental study on impact factors Neurol Res 24: 420–424

    Google Scholar 

  41. Kandel EI, Schavinsky YV (1972) Stereotaxic apparatus and operations in Russia in the 19th century J Neurosurg 37: 407–411

    PubMed  CAS  Google Scholar 

  42. Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H (1991) A frameless, armless navigational system for computer-assisted neurosurgery Technical note J Neurosurg 74: 845–849

    PubMed  CAS  Google Scholar 

  43. Kelly PJ (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration (comment) Neurosurgery 41: 613–614

    Article  Google Scholar 

  44. Kelly PJ, Alker GJ Jr., Goerss S (1982) Computer-assisted stereotactic laser microsurgery for the treatment of intracranial neoplasms Neurosurgery 10: 324–331

    PubMed  CAS  Google Scholar 

  45. Kelly PJ, Goerss SJ, Kall BA (1988) Evolution of contemporary instrumentation for computer-assisted stereotactic surgery Surg Neurol 30: 204–215

    Article  PubMed  CAS  Google Scholar 

  46. Kelly PJ, Kall BA, Goerss S (1984) Transposition of volumetric information derived from computed tomography scanning into stereotactic space Surg Neurol 21: 465–471

    Article  PubMed  CAS  Google Scholar 

  47. Kelly PJ, Olson MH, Wright AE (1978) Stereotactic implantation of iridium192 into CNS neoplasms Surg Neurol 10: 349–354

    PubMed  CAS  Google Scholar 

  48. King AP, Edwards PJ, Maurer CR Jr., de Cunha DA, Hawkes DJ, Hill DL, Gaston RP, Fenlon MR, Strong AJ, Chandler CL, Richards A, Gleeson MJ (1999) A system for microscope-assisted guided interventions Stereotact Funct Neurosurg 72: 107–111

    Article  PubMed  CAS  Google Scholar 

  49. Knauth M, Wirtz CR, Tronnier VM, Aras N, Kunze S, Sartor K (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas [see comments] AJNR Am J Neuroradiol 20: 1642–1646

    PubMed  CAS  Google Scholar 

  50. Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J (1993) Ultrasound-controlled neuronavigator-guided brain surgery J Neurosurg 79: 36–42

    PubMed  CAS  Google Scholar 

  51. Kurimoto M, Hayashi N, Kamiyama H, Nagai S, Shibata T, Asahi T, Matsumura N, Hirashima Y, Endo S (2004) Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study Minim Invasive Neurosurg 47: 278–283

    Article  PubMed  CAS  Google Scholar 

  52. Leksell L (1949) A stereotaxic apparatus for intracranial neurosurgery Acta Chir Scand 99: 229–253

    Google Scholar 

  53. Leksell L, Jernberg B (1980) Stereotaxis and tomography. A technical note Acta Neurochir (Wien) 52: 1–7

    Article  CAS  Google Scholar 

  54. Leksell L, Leksell D, Schwebel J (1985) Stereotaxis and nuclear magnetic resonance J Neurol Neurosurg Psychiatry 48: 14–18

    Article  PubMed  CAS  Google Scholar 

  55. Letteboer MMJ, Hellier P, Rueckert D, Willems PW, Niessen WJ (2004) Non-rigid registration of intraoperatively acquired 3D ultrasound data of brain tumours. IEEE-TMI

  56. Letteboer MMJ, Willems PW, Viergever MA, Niessen WJ (2003) Non-rigid registration of 3D ultrasound images of brain tumours acquired during neurosurgery

  57. Lewin JS (1999) Interventional MR imaging: concepts, systems, and applications in neuroradiology AJNR Am J Neuroradiol 20: 735–748

    PubMed  CAS  Google Scholar 

  58. Lindseth F, Kaspersen JH, Ommedal S, Lango T, Bang J, Hokland J, Unsgaard G, Hernes TA (2003) Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound Comput Aided Surg 8: 49–69

    PubMed  Google Scholar 

  59. Lunsford LD, Deutsch M, Yoder V (1985) Stereotactic interstitial brachytherapy: Current concepts and concerns in 20 patients Appl Neurophysiol 48: 117–120

    PubMed  CAS  Google Scholar 

  60. Manwaring KH (93) Intraoperative microendoscopy. In: Maciunas RJ (ed) Interactive Image-Guided Surgery. American Association of Neurological Surgeons, pp 217–232

  61. Marmulla R, Hilbert M, Niederdellmann H (1997) Inherent precision of mechanical, infrared and laser-guided navigation systems for computer-assisted surgery J Craniomaxillofac Surg 25: 192–197

    PubMed  CAS  Google Scholar 

  62. Matula C, Rossler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow Comput Aided Surg 3: 174–182

    Article  PubMed  CAS  Google Scholar 

  63. Maurer CR, Jr., Fitzpatrick JM, Wang MY, Galloway RL, Jr., Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers IEEE Trans Med Imaging 16: 447–462

    Article  PubMed  Google Scholar 

  64. Maurer CRJ, Hill DL, Martin AJ, Liu H, McCue M, Rueckert D, Lloret D, Hall WA, Maxwell RE, Hawkes DJ, Truwit CL (1998) Investigation of intraoperative brain deformation using a 1.5-T interventional MR system: preliminary results IEEE Trans Med Imaging 17: 817–825

    Article  PubMed  Google Scholar 

  65. McDermott MW, Gutin PH (1996) Image-guided surgery for skull base neoplasms using the ISG viewing wand. Anatomic and technical considerations. Neurosurg Clin N Am 7: 285–295

    CAS  Google Scholar 

  66. McPherson CM, Bohinski RJ, Dagnew E, Warnick RE, Tew JM (2003) Tumor resection in a shared-resource magnetic resonance operating room: experience at the University of Cincinnati Acta Neurochir Suppl (Wien) 85: 39–44

    CAS  Google Scholar 

  67. Mundinger F, Birg W, Klar M (1978) Computer-assisted stereotactic brain operations by means including computerized axial tomography Appl Neurophysiol 41: 169–182

    PubMed  CAS  Google Scholar 

  68. Narabayashi H (1952) Stereotaxic instrument for operation on the human basal ganglia Psychiat Neurol Japan 54: 669–671

    Google Scholar 

  69. Nimsky C, Fujita A, Ganslandt O, Von Keller B, Fahlbusch R (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging Neurosurgery 55: 358–370

    Article  PubMed  Google Scholar 

  70. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging Neurosurgery 47: 1070–1079

    Article  PubMed  CAS  Google Scholar 

  71. Nimsky C, Ganslandt O, Von Keller B, Fahlbusch R (2003) Preliminary experience in glioma surgery with intraoperative high-field MRI Acta Neurochir(Wien)Suppl 88: 21–29

    CAS  Google Scholar 

  72. Orth RC, Sinha P, Madsen EL, Frank G, Korosec FR, Mackie TR, Mehta MP (1999) Development of a unique phantom to assess the geometric accuracy of magnetic resonance imaging for stereotactic localization Neurosurgery 45: 1423–1429

    Article  PubMed  CAS  Google Scholar 

  73. Ostertag CB, Mennel HD, Kiessling M (1980) Stereotactic biopsy of brain tumors Surg Neurol 14: 275–283

    PubMed  CAS  Google Scholar 

  74. Paleologos TS, Wadley JP, Kitchen ND, Thomas DG (2000) Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery [In Process Citation] Neurosurgery 47: 40–47

    Article  PubMed  CAS  Google Scholar 

  75. Perry JH, Rosenbaum AE, Lunsford LD, Swink CA, Zorub DS (1980) Computed tomography/guided stereotactic surgery: conception and development of a new stereotactic methodology Neurosurgery 7: 376–381

    PubMed  CAS  Google Scholar 

  76. Poggi S, Pallotta S, Russo S, Gallina P, Torresin A, Bucciolini M (2003) Neuronavigation accuracy dependence on CT and MR imaging parameters: a phantom-based study Phys Med Biol 48: 2199–2216

    Article  PubMed  CAS  Google Scholar 

  77. Reinhardt HF, Zweifel HJ (1990) Interactive sonar-operated device for stereotactic and open surgery Stereotact Funct Neurosurg 54–55: 393–397

    PubMed  Google Scholar 

  78. Riechert T, Wolff M (1951) Uber eine neues Zielgerat zur intracraniellen electriche Ableitung und Ausschaltung Arch Psych Z Neurol 186: 225–230

    Article  CAS  Google Scholar 

  79. Roberts DW (95) Frameless stereotaxy. In: Cohen AR, Haines SJ (eds) Minimally invasive techniques in neurosurgery. pp 78–84

  80. Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases Neurosurgery 43(4): 749–758

    Article  PubMed  CAS  Google Scholar 

  81. Roberts DW, Miga MI, Hartov A, Eisner S, Lemery JM, Kennedy FE, Paulsen KD (1999) Intraoperatively updated neuroimaging using brain modeling and sparse data Neurosurgery 45(5): 1199–1206

    Article  PubMed  CAS  Google Scholar 

  82. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope J Neurosurg 65: 545–549

    Article  PubMed  CAS  Google Scholar 

  83. Roessler K, Ungersboeck K, Aichholzer M, Dietrich W, Goerzer H, Matula C, Czech T, Koos WT (1998) Frameless stereotactic lesion contour-guided surgery using a computer- navigated microscope Surg Neurol 49: 282–288

    Article  PubMed  CAS  Google Scholar 

  84. Rossolimo GI (1907) The brain topograph (device for projection of brain parts on the skull surface) Ezheg Ekaterin Bolnizi 1: 63–65

    Google Scholar 

  85. Ryan MJ, Erickson RK, Levin DN, Pelizzari CA, Macdonald RL, Dohrmann GJ (1996) Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration J Neurosurg 85: 287–292

    PubMed  CAS  Google Scholar 

  86. Sandeman DR, Gill SS (1995) The impact of interactive image guided surgery: the Bristol experience with the ISG/Elekta viewing Wand Acta Neurochir Suppl (Wien) 64: 54–58

    CAS  Google Scholar 

  87. Sandeman DR, Patel N, Chandler C, Nelson RJ, Coakham HB, Griffith HB (1994) Advances in image-directed neurosurgery: preliminary experience with the ISG Viewing Wand compared with the Leksell G frame Br J Neurosurg 8: 529–544

    PubMed  CAS  Google Scholar 

  88. Schad L, Lott S, Schmitt F, Sturm V, Lorenz WJ (1987) Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy J Comput Assist Tomogr 11: 499–505

    PubMed  CAS  Google Scholar 

  89. Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching Comput Aided Surg 7: 284–290

    Article  PubMed  CAS  Google Scholar 

  90. Shelden CH, McCann G, Jacques S, Lutes HR, Frazier RE, Katz R, Kuki R (1980) Development of a computerized microstereotaxic method for localization and removal of minute CNS lesions under direct 3-D vision Technical report. J Neurosurg 52: 21–27

    CAS  Google Scholar 

  91. Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H (1996) In vivo accuracy testing and clinical experience with the ISG Viewing Wand Neurosurgery 39: 194–202

    Article  PubMed  CAS  Google Scholar 

  92. Smith KR, Frank KJ, Bucholz RD (1994) The NeuroStation–a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery Comput Med Imaging Graph 18: 247–256

    Article  PubMed  CAS  Google Scholar 

  93. Spiegel EA, Wycis HT, Marks M, Lee ASJ (1947) Stereotaxic apparatus for operations on the human brain Science 106: 349–350

    PubMed  Google Scholar 

  94. Sumanaweera TS, Adler JR Jr., Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery Neurosurgery 35: 696–703

    PubMed  CAS  Google Scholar 

  95. Tan KK, Grzeszczuk R, Levin DN, Pelizzari CA, Chen GT, Erickson RK, Johnson D, Dohrmann GJ (1993) A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration. Technical note J Neurosurg 79: 296–303

    PubMed  CAS  Google Scholar 

  96. Villalobos H, Germano IM (1999) Clinical evaluation of multimodality registration in frameless stereotaxy Comput Aided Surg 4: 45–49

    Article  PubMed  CAS  Google Scholar 

  97. Walton L, Hampshire A, Forster DM, Kemeny AA (1996) A phantom study to assess the accuracy of stereotactic localization, using T1-weighted magnetic resonance imaging with the Leksell stereotactic system Neurosurgery 38: 170–176

    Article  PubMed  CAS  Google Scholar 

  98. Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K (1991) Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm Neurosurgery 28(6): 792–799

    Article  PubMed  CAS  Google Scholar 

  99. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery Surg Neurol 27: 543–547

    Article  PubMed  CAS  Google Scholar 

  100. Willems PW, Berkelbach van der Sprenkel JW, Tulleken CAF (2001) Comparison of adhesive markers, anatomical landmarks and surface matching in patient-to-image registration for frameless stereotaxy. Gannot I, Gulyaev YV, Papazoglou TG, van Swol CFP (eds), Proceedings of SPIE: 156–163

  101. Willems PW, Noordmans HJ, Berkelbach van der Sprenkel JW, Viergever MA, Tulleken CA (2001) An MKM-mounted instrument holder for frameless point-stereotactic procedures: a phantom-based accuracy evaluation J Neurosurg 95: 1067–1074

    Article  PubMed  CAS  Google Scholar 

  102. Willems PW, Noordmans HJ, Ramos LM, Taphoorn MJ, Berkelbach van der Sprenkel JW, Viergever MA, Tulleken CA (2003) Clinical evaluation of stereotactic brain biopsies with an MKM-mounted instrument holder Acta Neurochir (Wien) 145: 889–897

    Article  CAS  Google Scholar 

  103. Willems PW, Noordmans HJ, van Overbeeke JJ, Viergever MA, Tulleken CA, van der Sprenkel JW (2005) The impact of auditory feedback on neuronavigation Acta Neurochir (Wien) 147: 167–173

    Article  CAS  Google Scholar 

  104. Wirtz CR, Albert FK, Schwaderer M, Heuer C, Staubert A, Tronnier VM, Knauth M, Kunze S (2000) The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery Neurol Res 22: 354–360

    PubMed  CAS  Google Scholar 

  105. Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery Neurosurgery 46: 1112–1120

    Article  PubMed  CAS  Google Scholar 

  106. Zamorano LJ, Nolte L, Kadi AM, Jiang Z (1993) Interactive intraoperative localization using an infrared-based system Neurol Res 15: 290–298

    PubMed  CAS  Google Scholar 

  107. Zernov DN (1889) Encephalometer. Device for estimation of parts of brain in human. 70–8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.W.A. Willems.

Additional information

Received in revised form: 21 October 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willems, P., van der Sprenkel, J.B., Tulleken, C. et al. Neuronavigation and surgery of intracerebral tumours. J Neurol 253, 1123–1136 (2006). https://doi.org/10.1007/s00415-006-0158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0158-3

Keywords

Navigation