Skip to main content

Advertisement

Log in

Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abouchami W, Galer SJG, Koschinsky A (1999) Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: Proxies for trace metal paleosources and paleocean circulation. Geochimicia et Cosmochimica Acta 63:1489–1505

    Article  Google Scholar 

  • Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M (2005) Lead isotopes reveal bilateral asymmetry and vertical discontinuity in the Hawaiian mantle plume. Nature 434:851–856

    Article  Google Scholar 

  • Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci (Geol Rundsch) 91:562–582. doi:10.1007/s00531-002-0286-7

    Article  Google Scholar 

  • Ali MY, Watts AB, Hill I (2003) A seismic reflection profile study of lithospheric flexure in the vicinity of the Cape Verde Islands. J Geophys Res 108(B5):2239–2263

    Google Scholar 

  • Alt JC, Anderson TF, Bonnell L (1989) The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochim Cosmochim Acta 53:1011–1023

    Article  Google Scholar 

  • Alt JC, Shanks WC III, Jackson MC (1993) Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet Sci Lett 119:477–494

    Article  Google Scholar 

  • Andersson UB (1997) Petrogenesis of some Proterozoic granitoid suites and associated basic rocks in Sweden (geochemistry and isotope geology). SGU Rapp Medd 91:216

    Google Scholar 

  • Barker AK, Coogan LA, Gillis KM, Weis D (2008) Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: pervasive fluid flow at Pito Deep. Geochem Geophys Geosyst. doi:10.1029/2007GC001901

  • Barker AK, Holm PM, Peate DW, Baker JA (2009) Geochemical stratigraphy of submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, Cape Verde. J Petrol 50:169–193. doi:10.1093/petrology/egn081

    Article  Google Scholar 

  • Barker AK, Holm PM, Peate DW, Baker JA (2010) A five million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contrib Mineral Petrol 160:133–154. doi:10.1007/s00410-009-0470-x

    Article  Google Scholar 

  • Carracedo JC, Day S, Guillou H, Rodríguez Badiola E, Canas JA, Torrado P (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604. doi:10.1017/S0016756898001447

    Article  Google Scholar 

  • Chan L-H, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201

    Article  Google Scholar 

  • Courtney RC, White RS (1986) Anomalous heat-flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle. Geophys J R Astron Soc 87:815–867

    Article  Google Scholar 

  • Crough ST (1978) Thermal origin of mid-plate hot-spot swells. Geophys J R Astron Soc 55:451–469

    Article  Google Scholar 

  • Davies GR, Norry MJ, Gerlach DC, Cliff RA (1989) A combined chemical and Pb-Sr-Nd isotope study of the Azores and Cape Verde hot-spots: the geodynamic implications. In: Saunders AD, Norry MJ (Eds) Magmatism in Ocean Basins. Geol Soc Lond Special Publ 42:231–255

    Article  Google Scholar 

  • de Hoog JCM, Taylor BE, van Bergen MJ (2001) Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth Planet Sci Lett 189:237–252

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1979) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Acta 43:15–27

    Google Scholar 

  • Donoghue E, Troll VR, Harris C, O’Halloran A, Walter TR, Torrado FJP (2008) Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands. J Volcanol Geotherm Res 176:551–564

    Article  Google Scholar 

  • Doucelance R, Escrig S, Moriera M, Gariepy C, Kurz M (2003) Pb-Sr-He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochimicia et Cosmochimica Acta 67:3717–3733

    Article  Google Scholar 

  • Dyhr CT, Holm PM (2010) A volcanological and geochemical investigation of Boa Vista, Cape Verde Islands; 40Ar/39Ar geochronology and field constraints. J Volcanol Geotherm Res 189:19–32

    Article  Google Scholar 

  • Eisele J, Abouchami W, Galer SJG, Hofmann AW (2003) The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem Geophys Geosyst 4:8710. doi:10.1029/2002GC000339

    Article  Google Scholar 

  • Ellam RM (2006) New constraints on the petrogenesis of the Nuanetsi picrite basalts from Pb and Hf isotope data. Earth Planet Sci Lett 245:153–161

    Article  Google Scholar 

  • Escrig S, Doucelance R, Moreira M, Allégre C (2005) Os isotope systematics in Fogo Island: evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem Geol 219:93–113

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    Article  Google Scholar 

  • Fagereng A, Harris C, LaGrange M, Stevens G (2008) Stable isotope study of the Archaen rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib Mineral Petrol 155:63–78

    Article  Google Scholar 

  • Geist DJ, White WM, McBirney AR (1988) Plume-asthenosphere mixing beneath the Galapagos Archipelago. Nature 333:657–660

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Klügel A, van den Bogaard P, Bindeman I (2008) Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-I source. Earth Planet Sci Lett 265:167–182

    Article  Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochimicia et Cosmochimica Acta 52:2979–2992

    Article  Google Scholar 

  • Grassineau NV, Mattey DP, Lowry D (2001) Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry. Anal Chem 73:220–225

    Article  Google Scholar 

  • Grevemeyer I, Helffrich G, Faria B, Booth-Rea G, Schnabel M, Weinrebe RW (2010) Seismic activity at Cadamosto seamount near Fogo Island, Cape Verdes—formation of a new ocean island? Geophys J Int 180:552–558. doi:10.1111/j.1365-246X.2009.04440.x

    Article  Google Scholar 

  • Gurenko AA, Chaussidon M, Schmincke H-U (2001) Magma ascent and contamination beneath one intraplate volcano: evidence from S and O isotopes in glass inclusions and their host clinopyroxenes from Miocene basaltic hyaloclastites southwest of Gran Canaria (Canary Islands). Geochim Cosmochim Acta 65:4359–4374

    Article  Google Scholar 

  • Hansteen T, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193:181–193

    Article  Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the peninsula granite, Cape granite suite, South Africa: constraints on melting and emplacement mechanisms. S Afr J Geol 113:385–396

    Google Scholar 

  • Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallisation and evidence for assimilation. Contrib Mineral Petrol 138:164–175

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotopic anomaly in the southern hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hildner E, Klügel A, Hauff F (2011) Magma storage and ascent during the 1995 eruption of Fogo, Cape Verde archipelago. Contrib Mineral Petrol. doi: 10.1007/s00410-011-0623-6

  • Hill IA (1985) Geophysical studies of the Cape Verde archipelago. RRS Charles Darwin Cruise Report 8-85. University of Leicester

  • Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880

    Article  Google Scholar 

  • Hoernle K, Tilton G, Schminke H-U (1991) Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63

    Article  Google Scholar 

  • Hoernle K, Werner R, Morgan JP, Garbe-Schönberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zonation in the Galápagos plume for at least 14 m.y. Geology 28:435–438

    Article  Google Scholar 

  • Holm PM, Wilson JR, Christensen BP, Hansen L, Hansen SL, Hein KH, Mortensen AK, Pedersen R, Plesner S, Runge MK (2006) Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde Islands. J Petrol 47:145–189

    Article  Google Scholar 

  • Hubberton HW (1983) Sulfur content and sulfur isotopes of basalts from the Costa Rica Rift (Hole 504B, DSDP Legs 69 and 70). In Initial Reports DSDP (eds J. Honnorez et al.,) 69:629–635. doi:10.2973/dsdp.proc.69.136.1983

    Google Scholar 

  • Ito E, White WM, Gopel C (1987) The O, Sr, Nd, and Pb isotope geochemistry of MORB. Chem Geol 62:157–176

    Article  Google Scholar 

  • Kawahata H, Kusakabe M, Kikuchi Y (1987) Strontium, oxygen, and hydrogen isotope geochemistry of hydrothermally altered and weathered rocks in DSDP Hole 504B, Costa Rica Rift. Earth Planet Sci Lett 85:343–355

    Article  Google Scholar 

  • Kokfelt TF, Holm PM, Hawkesworth CJ, Peate DW (1998) A lithospheric mantle source for the Cape Verde Island magmatism: trace element and isotopic evidence from the Island of Fogo. Mineral Mag 62A:801–802

    Article  Google Scholar 

  • Lodge A, Helffrich G (2006) Depleted swell root beneath the Cape Verde Islands. Geology 34:449–452

    Article  Google Scholar 

  • Madeira J, Mata J, Maurão C, da Silveira AB, Martins S, Ramalho R, Hoffmn DL (2010) Volcano-stratigraphy and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U-Th and field constraints. J Volcanol Geotherm Res 196:219–235

    Article  Google Scholar 

  • Martins S, Mata J, Munhá J, Mendes MH, Maerschalk C, Caldeira R, Mattielli N (2009) Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineral Petrol. doi: 10.1007/s00710-009-0078-x

  • Melguen M (1978) Facies evolution, carbonate dissolution cycles in sediments from the eastern south Atlantic (DSDP Leg 40) since the early Cretaceous. Initial Reports DSDP, volume XL, Washington US Government Printing Office

  • Meyer R, Nicoll GR, Hertogen J, Troll VR, Ellam RM, Emeleus CH (2009) Trace element and isotope constraints on crustal anatexis by upwelling mantle melts in the North Atlantic Igneous province: an example from the Isle of Rum, NW Scotland. Geol Mag 146:382–399

    Article  Google Scholar 

  • Millet M-A, Doucelance R, Schiano P, David K, Bosq C (2008) Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J Volcanol Geotherm Res 176:265–276. doi:10.1016/j.jvolgeores.2008.04.003

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 30:338–343

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Siefert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • O’Hara MJ (1998) Volcanic plumbing and the space problem- thermal and geochemical consequences of large-scale assimilation in ocean island development. J Petrol 39:1077–1089

    Article  Google Scholar 

  • Pedersen RB, Furnes H (2001) Nd- and Pb-isotopic variations through the upper oceanic crust in DSDP/ODP Hole 504B, Costa Rica Rift. Earth Planet Sci Lett 189:221–235

    Article  Google Scholar 

  • Pim J, Peirce C, Watts AB, Grevemeyer L, Krabbenhoeft A (2008) Crustal structure and origin of the Cape Verde Rise. Earth Planet Sci Lett 272:422–428

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Putirka K, Mikaelian H, Ryerson FJ, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, ID. Am Mineral 88:1542–1554

    Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42:377–381

    Article  Google Scholar 

  • Regelous M, Hofmann AW, Abouchami W, Galer SJG (2003) Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J Petrol 44:113–140

    Article  Google Scholar 

  • Sakai H, Casadevall TJ, Moore JG (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii. Geochim Cosmochim Acta 46:729–738

    Article  Google Scholar 

  • Sakai H, Des Marias DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441

    Article  Google Scholar 

  • Shanks WC III, Bischoff JL, Rosenbauer RJ (1981) Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C. Geochim Cosmochim Acta 45:1977–1995

    Article  Google Scholar 

  • Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallisation (EC-AFC) formulation. J Petrol 42:999–1018

    Article  Google Scholar 

  • Taylor HP Jr, Sheppard SMF (1986) Igneous Rocks 1. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, and O’Neil JR (Eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:227–271

    Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361–386

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  Google Scholar 

  • Ueda A, Sakai H (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochim Cosmochim Acta 48:1837–1848

    Article  Google Scholar 

  • Venneman TW, Smith HS (1990) The rate and temperature of reaction of ClF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chem Geol (Isotope Geosci Sect) 86:83–88

    Article  Google Scholar 

  • Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9–10°N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res 105:11203–11222

    Article  Google Scholar 

  • Wallace P, Carmichael ISE (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56:1863–1874

    Article  Google Scholar 

  • Weaver BL (1990) Geochemistry of highly-undersaturated ocean island basalt suites from the South Atlantic Ocean: Fernando de Noronha and Trindade islands. Contrib Mineral Petrol 105:502–515

    Article  Google Scholar 

  • Zhao Z-F, Zheng Y-F (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for technical assistance with laboratory analyses provided by Hans Harryson, Uppsala University, Dagmar Rau, IFM-GEOMAR, Fayrooza Rawoot, University of Cape Town, Anne Kelly, Kathy Keefe and Vincent Gallagher at SUERC and Wendy Abdi and Paul Middlested, G.G. Hatch Isotope Laboratories, University of Ottawa. We would like to thank Jörg Geldmacher and two anonymous reviewers for their constructive reviews. We thank the Swedish National Research Council, Vetenskapsrådet for support via grant Dnr: 2009-4316 to Barker and Troll.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Barker.

Additional information

Communicated by J. Hoefs.

Submitted to Contributions to Mineralogy and Petrology, 16th April 2011.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 345 kb)

Supplementary material 2 (XLS 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, A.K., Troll, V.R., Ellam, R.M. et al. Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1. Contrib Mineral Petrol 163, 949–965 (2012). https://doi.org/10.1007/s00410-011-0708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0708-2

Keywords

Navigation