Skip to main content
Log in

Quantitative Computed Tomography: What Clinical Questions Can it Answer in Chronic Lung Disease?

  • QUANTITATIVE COMPUTED TOMOGRAPHY: LUNG IMAGING
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Quantitative computed tomography (QCT) has recently gained an important role in the functional assessment of chronic lung disease. Its capacity in diagnostic, staging, and prognostic evaluation in this setting is similar to that of traditional pulmonary function testing. Furthermore, it can demonstrate lung injury before the alteration of pulmonary function test parameters, and it enables the classification of disease phenotypes, contributing to the customization of therapy and performance of comparative studies without the intra- and inter-observer variation that occurs with qualitative analysis. In this review, we address technical issues with QCT analysis and demonstrate the ability of this modality to answer clinical questions encountered in daily practice in the management of patients with chronic lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CALIPER:

Computer-Aided Lung Informatics for Pathology Evaluation and Rating

COPD:

Chronic obstructive pulmonary disease

CT:

Computed tomography

DTA:

Data-driven textural analysis

FEV1 :

Forced expiratory volume in the first second

FVC:

Forced vital capacity

HAAs:

High-attenuation areas

HU:

Hounsfield units

ILD:

Interstitial lung disease

MESA:

Multi-Ethnic Study of Atherosclerosis

NLI:

Normal lung index

PFT:

Pulmonary function test

PRM:

Parametric response mapping

QCT:

Quantitative computed tomography

SPIROMICS:

Sub-Populations and Intermediate Outcome Measures in COPD Study

References

  1. Chen A, Karwoski RA, Gierada DS et al (2020) Quantitative CT analysis of diffuse lung disease. Radiographics 40:28–43. https://doi.org/10.1148/rg.2020190099

    Article  PubMed  Google Scholar 

  2. Matsuoka S, Yamashiro T, Washko GR et al (2010) Quantitative CT assessment of chronic obstructive pulmonary disease. Radiographics 30:55–66. https://doi.org/10.1148/rg.301095110

    Article  PubMed  Google Scholar 

  3. Mascalchi M, Camiciottoli G, Diciotti S (2017) Lung densitometry: why, how and when. J Thorac Dis 9:3319–3345. https://doi.org/10.21037/jtd.2017.08.17

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cheng T, Li Y, Pang S et al (2019) Normal lung attenuation distribution and lung volume on computed tomography in a Chinese population. Int J Chron Obstruct Pulmon Dis 14:1657–1668. https://doi.org/10.2147/COPD.S187596

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barros MC, Hochhegger B, Altmayer S et al (2021) The normal lung index from quantitative computed tomography for the evaluation of obstructive and restrictive lung disease. J Thorac Imaging Publish Ah. https://doi.org/10.1097/RTI.0000000000000629

    Article  Google Scholar 

  6. Shin KE, Chung MJ, Jung MP et al (2011) Quantitative computed tomographic indexes in diffuse interstitial lung disease. J Comput Assist Tomogr 35:266–271. https://doi.org/10.1097/RCT.0b013e31820ccf18

    Article  PubMed  Google Scholar 

  7. Humphries SM, Yagihashi K, Huckleberry J et al (2017) Idiopathic pulmonary fibrosis: data-driven textural analysis of extent of fibrosis at baseline and 15-month follow-up. Radiology 285:270–278. https://doi.org/10.1148/radiol.2017161177

    Article  PubMed  Google Scholar 

  8. Bartholmai BJ, Raghunath S, Karwoski RA et al (2013) Quantitative computed tomography imaging of interstitial lung diseases. J Thorac Imaging 28:298–307. https://doi.org/10.1097/RTI.0b013e3182a21969

    Article  PubMed  Google Scholar 

  9. Maldonado F, Moua T, Rajagopalan S et al (2014) Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 43:204–212. https://doi.org/10.1183/09031936.00071812

    Article  PubMed  Google Scholar 

  10. Jacob J, Bartholmai BJ, Rajagopalan S et al (2017) Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J 49:1601011. https://doi.org/10.1183/13993003.01011-2016

    Article  PubMed  Google Scholar 

  11. Galbán CJ, Han MK, Boes JL et al (2012) Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715. https://doi.org/10.1038/nm.2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sieren JP, Newell JD, Barr RG et al (2016) SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med 194:794–806. https://doi.org/10.1164/rccm.201506-1208PP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hara AK, Paden RG, Silva AC et al (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193:764–771. https://doi.org/10.2214/AJR.09.2397

    Article  Google Scholar 

  14. Hammond E, Sloan C, Newell JD et al (2017) Comparison of low- and ultralow-dose computed tomography protocols for quantitative lung and airway assessment. Med Phys 44:4747–4757. https://doi.org/10.1002/mp.12436

    Article  PubMed  Google Scholar 

  15. Wisselink HJ, Pelgrim GJ, Rook M et al (2021) Ultra-low-dose CT combined with noise reduction techniques for quantification of emphysema in COPD patients: an intra-individual comparison study with standard-dose CT. Eur J Radiol 138:109646. https://doi.org/10.1016/j.ejrad.2021.109646

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Zeng Q, Zhang M et al (2017) Quantitative low-dose computed tomography of the lung parenchyma and airways for the differentiation between chronic obstructive pulmonary disease and asthma patients. Respiration 94:366–374. https://doi.org/10.1159/000478531

    Article  PubMed  Google Scholar 

  17. Heussel CP, Kappes J, Hantusch R et al (2010) Contrast enhanced CT-scans are not comparable to non-enhanced scans in emphysema quantification. Eur J Radiol 74:473–478. https://doi.org/10.1016/j.ejrad.2009.03.023

    Article  CAS  PubMed  Google Scholar 

  18. Fain SB, Lynch DA, Hatt C (2020) Invited commentary on “quantitative CT analysis of diffuse lung disease.” Radiographics 40:E1–E3. https://doi.org/10.1148/rg.2020200005

    Article  PubMed  Google Scholar 

  19. Sousa C, Rodrigues M, Carvalho A et al (2019) Diffuse smoking-related lung diseases: insights from a radiologic-pathologic correlation. Insights Imaging 10:73. https://doi.org/10.1186/s13244-019-0765-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lynch DA, Austin JHM, Hogg JC et al (2015) CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 277:192–205. https://doi.org/10.1148/radiol.2015141579

    Article  PubMed  Google Scholar 

  21. Mohamed Hoesein FAA, de Hoop B, Zanen P et al (2011) CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax 66:782–787. https://doi.org/10.1136/thx.2010.145995

    Article  PubMed  Google Scholar 

  22. Schroeder JD, McKenzie AS, Zach JA et al (2013) Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. Am J Roentgenol 201:W460–W470. https://doi.org/10.2214/AJR.12.10102

    Article  Google Scholar 

  23. Lynch DA, Al-Qaisi MA (2013) Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging 28:284–290. https://doi.org/10.1097/RTI.0b013e318298733c

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bakker JT, Klooster K, Vliegenthart R, Slebos D-J (2021) Measuring pulmonary function in COPD using quantitative chest computed tomography analysis. Eur Respir Rev 30:210031. https://doi.org/10.1183/16000617.0031-2021

    Article  PubMed  Google Scholar 

  25. Kirby M, Smith BM, Tanabe N et al (2021) Computed tomography total airway count predicts progression to COPD in at-risk smokers. ERJ Open Res 7:00307–02021. https://doi.org/10.1183/23120541.00307-2021

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mohammed N, Kestin LL, Grills IS et al (2011) Rapid disease progression with delay in treatment of non–small-cell lung cancer. Int J Radiat Oncol 79:466–472. https://doi.org/10.1016/j.ijrobp.2009.11.029

    Article  Google Scholar 

  27. Pompe E, Galbán CJ, Ross BD et al (2017) Parametric response mapping on chest computed tomography associates with clinical and functional parameters in chronic obstructive pulmonary disease. Respir Med 123:48–55. https://doi.org/10.1016/j.rmed.2016.11.021

    Article  PubMed  Google Scholar 

  28. Regan EA, Lynch DA, Curran-Everett D et al (2015) Clinical and radiologic disease in smokers with normal spirometry. JAMA Intern Med 175:1539. https://doi.org/10.1001/jamainternmed.2015.2735

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ash SY, San José Estépar R, Fain SB et al (2021) Relationship between emphysema progression at CT and mortality in ever-smokers: results from the COPDGene and ECLIPSE cohorts. Radiology 299:222–231. https://doi.org/10.1148/radiol.2021203531

    Article  PubMed  Google Scholar 

  30. Konietzke P, Wielpütz MO, Wagner WL et al (2020) Quantitative CT detects progression in COPD patients with severe emphysema in a 3-month interval. Eur Radiol 30:2502–2512. https://doi.org/10.1007/s00330-019-06577-y

    Article  PubMed  Google Scholar 

  31. Loeh B, Brylski LT, von der Beck D et al (2019) Lung CT densitometry in idiopathic pulmonary fibrosis for the prediction of natural course, severity, and mortality. Chest 155:972–981. https://doi.org/10.1016/j.chest.2019.01.019

    Article  PubMed  Google Scholar 

  32. Easthausen I, Podolanczuk A, Hoffman E et al (2020) Reference values for high attenuation areas on chest CT in a healthy, never-smoker, multi-ethnic sample: the MESA study. Respirology 25:855–862. https://doi.org/10.1111/resp.13783

    Article  PubMed  PubMed Central  Google Scholar 

  33. Podolanczuk AJ, Oelsner EC, Barr RG et al (2016) High attenuation areas on chest computed tomography in community-dwelling adults: the MESA study. Eur Respir J 48:1442–1452. https://doi.org/10.1183/13993003.00129-2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lynch DA (2007) Quantitative CT of fibrotic interstitial lung disease. Chest 131:643–644. https://doi.org/10.1378/chest.06-2955

    Article  PubMed  Google Scholar 

  35. Jankharia B, Angirish B (2021) Computer-aided quantitative analysis in interstitial lung diseases—a pictorial review using CALIPER. Lung India 38:161. https://doi.org/10.4103/lungindia.lungindia_244_20

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silva M, Milanese G, Seletti V et al (2018) Pulmonary quantitative CT imaging in focal and diffuse disease: current research and clinical applications. Br J Radiol. https://doi.org/10.1259/bjr.20170644

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim GHJ, Weigt SS, Belperio JA et al (2020) Prediction of idiopathic pulmonary fibrosis progression using early quantitative changes on CT imaging for a short term of clinical 18–24-month follow-ups. Eur Radiol 30:726–734. https://doi.org/10.1007/s00330-019-06402-6

    Article  PubMed  Google Scholar 

  38. Best AC, Meng J, Lynch AM et al (2008) Idiopathic pulmonary fibrosis: physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality. Radiology 246:935–940. https://doi.org/10.1148/radiol.2463062200

    Article  PubMed  Google Scholar 

  39. De Giacomi F, Raghunath S, Karwoski R et al (2018) Short-term automated quantification of radiologic changes in the characterization of idiopathic pulmonary fibrosis versus nonspecific interstitial pneumonia and prediction of long-term survival. J Thorac Imaging 33:124–131. https://doi.org/10.1097/RTI.0000000000000317

    Article  PubMed  Google Scholar 

  40. Jacob J, Bartholmai BJ, Rajagopalan S et al (2017) Unclassifiable-interstitial lung disease: outcome prediction using CT and functional indices. Respir Med 130:43–51. https://doi.org/10.1016/j.rmed.2017.07.007

    Article  PubMed  Google Scholar 

  41. Haruna A, Muro S, Nakano Y et al (2010) CT scan findings of emphysema predict mortality in COPD. Chest 138:635–640. https://doi.org/10.1378/chest.09-2836

    Article  PubMed  Google Scholar 

  42. Barros MC, Hochhegger B, Altmayer S et al (2018) Quantitative computed tomography phenotypes, spirometric parameters, and episodes of exacerbation in heavy smokers: an analysis from South America. PLoS ONE 13:e0205273. https://doi.org/10.1371/journal.pone.0205273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johannessen A, Skorge TD, Bottai M et al (2013) Mortality by level of emphysema and airway wall thickness. Am J Respir Crit Care Med 187:602–608. https://doi.org/10.1164/rccm.201209-1722OC

    Article  PubMed  Google Scholar 

  44. Wu X, Kim GH, Salisbury ML et al (2019) Computed tomographic biomarkers in idiopathic pulmonary fibrosis. The future of quantitative analysis. Am J Respir Crit Care Med 199:12–21. https://doi.org/10.1164/rccm.201803-0444PP

    Article  PubMed  Google Scholar 

  45. Hochhegger B, Irion KL, Marchiori E, Moreira JS (2011) Reconstruction algorithms influence the follow-up variability in the longitudinal CT emphysema index measurements. Korean J Radiol 12:169. https://doi.org/10.3348/kjr.2011.12.2.169

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ohno Y, Aoyagi K, Takenaka D et al (2021) Machine learning for lung CT texture analysis: improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases. Eur J Radiol 134:109410. https://doi.org/10.1016/j.ejrad.2020.109410

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Imbio (Minneapolis, MN) for providing us with a sample report of their software for this review.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.C.B. and S.A. wrote the first draft. A.R.C., R.R., and M.Z. contributed to the writing of the manuscript draft and literature review. T.L.M., P.P., A.M, B.M., M.C. helped with the preparation of figures and provided intellectual input. B.H. conceptualized the manuscript and supervised its writing. All authors reviewed the final version and contributed to the editing of the manuscript.

Corresponding author

Correspondence to Marcelo Cardoso Barros.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, M.C., Altmayer, S., Carvalho, A.R. et al. Quantitative Computed Tomography: What Clinical Questions Can it Answer in Chronic Lung Disease?. Lung 200, 447–455 (2022). https://doi.org/10.1007/s00408-022-00550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-022-00550-1

Keywords

Navigation