Skip to main content

Advertisement

Log in

Characterization of newly established tumor lines from a spontaneous malignant schwannoma in F344 rats: nerve growth factor production, growth inhibition by transforming growth factor-β1, and macrophage-like phenotype expression

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Transplantable tumor (KE) and clone cell (KE-F11) lines were established from a spontaneous malignant schwannoma found in an aged F344 rat. The primary tumor and KE tumors consisted of oval or spindle cells arranged in ill-defined bundles. Cultured KE-F11 cells exhibited polygonal or spindle configurations. Immunohistochemically, neoplastic cells in KE and KE-F11 reacted to vimentin, S-100 protein, neuron-specific enolase, myelin basic protein, and glial fibrillary acidic protein in varying degrees, indicating neurogenic features; occasional cells reacted to α-smooth muscle actin. Cells positive for lysosomal enzymes (acid phosphatase and non-specific esterase), and ED1 (rat macrophage specific) were observed in KE-F11, and electron microscopically, cells with many lysosomes were frequently present, indicating expression of macrophage-like phenotypes. Bioassay analysis revealed that KE-F11 cells produced high levels of nerve growth factor. DNA synthesis was inhibited by addition of transforming growth factor-β1 (TGF-β1), and Northern blot analysis revealed that expression of c-myc, a cell cycle-related immediate early gene, was depressed by TGF-β1. Likely, TGF-β1 is a factor capable of inhibiting cellular growth of Schwann cells. mRNA expression of the low-density lipoprotein receptor-related protein (LRP) was seen in KE-F11 cells by Northern blot analysis, and the level was decreased by lipopolysaccharide (LPS) treatment. LRP may be attributable to regulation of Schwann cell functions. KE-F11 cells seeded on laminin-coated dishes exhibited more extended cytoplasmic projections than on collagen type I-coated dishes. The present study provides evidence that biological properties of malignant schwannoma-derived cells might be affected by exogenous factors such as TGF-β1, LPS and laminin. These tumor lines may be useful for studies on pathobiological characteristics of Schwann cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8. A

Similar content being viewed by others

References

  1. Baker SJ, Gunn JS, Morona R (1999) The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology 145:367–378

    CAS  PubMed  Google Scholar 

  2. Balmain A, Krumlauf R, Vass JK, Birnie GD (1982) Cloning and characterisation of the abundant cytoplasmic 7S RNA from mouse cells. Nucleic Acids Res 10:4259–4277

    CAS  PubMed  Google Scholar 

  3. Bandtlow CE, Heumann R, Schwab ME, Thoenen H (1987) Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J 6:891–899

    CAS  PubMed  Google Scholar 

  4. Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H (1990) Regional and cellular codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol 111:1701–1711

    CAS  PubMed  Google Scholar 

  5. Banu N, Meyers CM (1999) TGF-β1 down-regulates induced expression of both class II MHC and B7–1 on primary murine renal tubular epithelial cells. Kidney Int 56:985–994

    Article  CAS  PubMed  Google Scholar 

  6. Baur AM, Gamberger TI, Weerda HG, Gjuric M, Tamm ER (1995) Laminin promotes differentiation, adhesion and proliferation of cell cultures derived from human acoustic nerve schwannoma. Acta Otolaryngol 115:517–521

    CAS  PubMed  Google Scholar 

  7. Bu GY, Sun Y, Schwartz AL, Holtzman DM (1998) Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein. J Biol Chem 273:13359–13365

    Article  CAS  PubMed  Google Scholar 

  8. Columbano A, Ledda-Columbano GM, Pibiri M, Piga R, Shinozuka H, De Luca V, Cerignoli F, Tripodi F (1997) Increased expression of c-fos, c-jun and LRF-1 is not required for in vivo priming of hepatocytes by the mitogen TCPOBOP. Oncogene 14:857–863

    Article  CAS  PubMed  Google Scholar 

  9. Damoiseaux JGMC, Döpp EA, Calame W, Chao D, MacPherson GG, Dijkstra CD (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology 83:140–147

    CAS  PubMed  Google Scholar 

  10. Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    CAS  PubMed  Google Scholar 

  11. D'Mello SR, Heinrich G (1991) Multiple signalling pathways interact in the regulation of nerve growth factor production in L929 fibroblasts. J Neurochem 57:1570–1576

    CAS  PubMed  Google Scholar 

  12. Elwell M R, Stedham MA, Kovatch RM (1990) Skin and subcutis. In:Boorman GA, Eustis SL, Elwell MR, Montogomery CA Jr, MacKenzie WF (eds) Pathology of the Fischer rat. Academic Press, San Diego, pp 261–277

  13. Enzinger FM, Weiss SW (1994) Malignant tumors of the peripheral nerves. In: Enzinger FM, Weiss SW (eds) Soft tissue tumors. Mosby, St.Louis, pp 889–928

  14. Foo IT, Naylor IL, Timmons MJ, Trejdosiewicz LK (1992) Intracellular actin as a marker for myofibroblasts in vitro. Lab Invest 67:727–733

    CAS  PubMed  Google Scholar 

  15. Griffin JW, Grorge R, Ho T (1993) Macrophage system in peripheral nerves: a review. J Neuropathol Exp Neurol 52:553–560

    Google Scholar 

  16. Hines JE, Johnson SJ, Burt AD (1993) In vivo responses of macrophages and perisinusoidal cells to cholestatic liver injury. Am J Pathol 142:511–518

    CAS  PubMed  Google Scholar 

  17. Hung G, Li X, Faudoa R, Xeu Z, Kluwe L, Rhim JS, Slattery W, Lim D (2002) Establishment and characterization of a schwannoma cell line from a patient with neurofibromatosis 2. Int J Oncol 20:475–482

    CAS  PubMed  Google Scholar 

  18. Hussaini IM, LaMarre J, Lysiak JJ, Karns LR, VandenBerg SR, Gonias SL (1996) Transcriptional regulation of LDL receptor-related protein in IFN-gamma and the antagonistic activity of TGF-beta (1) in the RAW 264.7 macrophage-like cell line. J Leukoc Biol 59:733–739

    CAS  PubMed  Google Scholar 

  19. Kimura H, Schubert D (1992) Schwannoma-derived growth factor promotes the neuronal differentiation and survival of PC12 cells. J Cell Biol 116:777–783

    CAS  PubMed  Google Scholar 

  20. Kuwamura M, Yamate J, Kotani T, Tekeuchi T, Sakuma S (1998) Canine peripheral nerve sheath tumor with eosinophilic cytoplasmic globules. Vet Pathol 35:223–226

    CAS  PubMed  Google Scholar 

  21. Laithwaite JE, Benn SJ, Yamate J, FitzGerald DJ, LaMarre J (1999) Enhanced macrophage resistance to Pseudomonas exotoxin A is correlated with decreased expression of the low-density lipoprotein receptor-related protein. Infect Immun 67:5287–5833

    Google Scholar 

  22. LaMarre J, Hayes MA, Wollenberg GK, Hussaini I, Hall SW, Gonias SL (1991) An alpha 2-macroglobulin receptor-dependent mechanism for the plasma clearance of transforming growth factor-beta 1 in mice. J Clin Invest 87:39–44

    CAS  PubMed  Google Scholar 

  23. Lin JK, Chou CK (1992) In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor-β1. Cancer Res 52:385–388

    CAS  PubMed  Google Scholar 

  24. Lisak RP, Bealmear B, Benjamins JA, Skoff AM (2001) Interferon-gamma, tumor necrosis factor-alpha, and transforming growth factor-beta inhibit cyclin AMP-induced Schwann cell differentiation. Glia 36:354–363

    Article  CAS  PubMed  Google Scholar 

  25. Liu HM, Yang LH, Yang YJ (1995) Schwann cell properties: 3. c-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J Neuropathol Exp Neurol 54:487–496

    CAS  PubMed  Google Scholar 

  26. Mambetisaeva ET, Gire V, Evans WH (1999) Multiple connexin expression in peripheral nerve, Schwann cells and schwannoma cells. J Neurosci Res 57:166–175

    CAS  PubMed  Google Scholar 

  27. Muir D, Neubauer D, Lim IT, Yachnis AT, Wallace MR (2001) Tumorigenic properties of neurofibromin-deficient neurofibroma Schwann cells. Am J Pathol 158:501–513

    CAS  PubMed  Google Scholar 

  28. Nakanishi M, Yamate J, Nakatsuji S, Ide M, Sawamoto O, Kuwamura M, Kotani T, Sakuma S (2002) Establishment of a transplantable tumor line (IP) derived from rat pulmonary carcinoma, developing humoral hypercalcemia of malignancy in IP-bearing rats. Virchows Arch 440:195–204

    CAS  PubMed  Google Scholar 

  29. Oka H, Jin L, Kulig E, Scheithauer BW, Lloyd RV (1999) Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-beta 1-induced apoptosis in a human pituitary adenoma cell line. Am J Pathol 155:1893–1900

    CAS  PubMed  Google Scholar 

  30. Parkinson DB, Dong Z, Bunting H, Whitfield J, Meier C, Marie H, Mirsky R, Jessen, KR (2001) Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c-jun activation, interactions with survival signals, and the relationship of TGFbeta-mediated death to Schwann cell differentiation. J Neurosci 21:8572–8585

    CAS  PubMed  Google Scholar 

  31. Rogister B, Delree P, Leprince P, Martin D, Sadzot C, Malgrange B, Munaut C, Rigo JM, Lefebvre PP, Octave JN, Schoenen J, Moonen G (1993) Transforming growth factor β as a neuronoglial signal during peripheral nervous system response to injury. J Neurosci Res 34:32–43

    CAS  PubMed  Google Scholar 

  32. Sappino AP, Schurch W, Gabbiani G (1990) Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63:144–161

    CAS  PubMed  Google Scholar 

  33. Satoh H, Shimoda H, Daa T, Kashima K, Yokoyama S, Nakayama I (1993) Establishment and immunohistochemical characterization of an experimentally induced transplantable malignant schwannoma in the rat and two derived cell lines. Acta Pathol Jpn 43:537–544

    CAS  PubMed  Google Scholar 

  34. Schocklmann HO, Lang S, Sterzel B (1999) Regulation of mesangial cell proliferation. Kidney Int 56:1199–1207

    CAS  PubMed  Google Scholar 

  35. Shakibaei M, Frevert U (1996) Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor-related protein (LRP) and heparan sulfate proteoglycans. J Exp Med 184:1699–1711

    CAS  PubMed  Google Scholar 

  36. Skoff AM, Lisak RP, Bealmear B, Benjamins JA (1998) TNF-alpha and TGF-beta act synergistically to kill Schwann cells. J Neurosci Res 53:747–756

    Article  CAS  PubMed  Google Scholar 

  37. Sulaiman OA, Gordon T (2002) Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo. Glia 37:206–218

    Article  PubMed  Google Scholar 

  38. Takenouchi T, Kadosaka M, Shin SY, Munekata E (1999) Biological actions of the epidermal growth factors-like domain peptides of mouse schwannoma-derived growth factor and human amphiregulin. J Pept Res 53:120–125

    Article  CAS  PubMed  Google Scholar 

  39. Tamaki K, Okuda S, Ando T, Iwamoto T, Nakayama M, Fujishima M (1994) TGF-β1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy. Kidney Int 45:525–536

    CAS  PubMed  Google Scholar 

  40. Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502

    CAS  PubMed  Google Scholar 

  41. Tsujino K, Yamate J, Tsukamoto Y, Kumagai D, Kannan Y, Jippo T, Kuwamura M, Kotani T, Takeya M, Sakuma S (1997) Establishment and characterization of cell lines derived from a transplantable rat malignant meningioma: morphological heterogeneity and production of nerve growth factor. Acta Neuropathol 93:461–470

    CAS  PubMed  Google Scholar 

  42. Valledor AF, Borras FE, Cullell-Young M, Celada A (1998) Transcription factors that regulate monocyte/macrophage differentiation. J Leukoc Biol 63:405–417

    CAS  PubMed  Google Scholar 

  43. Vogeley KY, Bilzer T, Reifenberger G, Wechsler W (1991) Immunochemistry of ethylnitrosourea-induced rat neurinomas, the RN6 neurinoma cell line and their transplantation tumors. Acta Neuropathol 82:78–85

    CAS  PubMed  Google Scholar 

  44. Vougioukas VI, Roeske S, Michel U, Bruck W (1998) Wallerian degeneration in ICAM-1-deficient mice. Am J Pathol 152:241–249

    CAS  PubMed  Google Scholar 

  45. Wada Y, Jimi A, Nakashima O, Kojiro M, Kurohiji T, Sai K (1998) Schwannoma of the liver: report of two surgical cases. Pathol Int 48:611–617

    CAS  PubMed  Google Scholar 

  46. Weerda HG, Gamberger TI, Siegner A, Gjuric M, Tamm ER (1998) Effects of transforming growth factor-beta1 and basic fibroblast growth factor on proliferation of cell cultures derived from human vestibular nerve schwannoma. Acta Otolaryngol 118:337–343

    Article  CAS  PubMed  Google Scholar 

  47. Wu YY, Bradshaw RA (1996) Synergistic induction of neurite outgrowth by nerve growth factor or epidermal growth factor and interleukin-6 in PC12 cells. J Biol Chem 271:13033–13039

    Article  CAS  PubMed  Google Scholar 

  48. Xiao BG, Bai XF, Zhang GX, Link H (1997) Transforming growth factor-β1 induces apoptosis of rat microglia without relation to bcl-2 oncoprotein expression. Neurosci Lett 226:71–74

    Article  CAS  PubMed  Google Scholar 

  49. Yamashiro S, Takeya M, Nishi T, Kuratsu J, Yoshimura T, Ushio Y, Takahashi K (1994) Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumor. Am J Pathol 145:856–867

    CAS  PubMed  Google Scholar 

  50. Yamate J, Iwaki M, Kumagai D, Tsukamoto Y, Kuwamura M, Nakatsuji S, Tsunenari I, Kotani T, Sakuma S (1997) Characteristics of a fibrosarcoma-derived transplantable tumor line (SS) and cultured cell lines (SS-P and SS-A3–1) showing myofibroblastic and histiocytic phenotypes. Virchows Arch 431:431–440

    CAS  Google Scholar 

  51. Yamate J, Maeda M, Benn SJ, Laithwaite JE, Allan A, Ide M, Kuwamura M, Kotani T, Sakuma S, LaMarre J (2001) Differential effects of transforming growth factor-β1, a fibrogenic factor, on macrophage-like cells (HS-P) and myofibroblastic cell (MT-9) in vitro. Toxicol Pathol 129:483–491

    Article  Google Scholar 

  52. Yamate J, Maeda M, Benn SJ, Laithwaite JE, Allan A, Ide M, Kuwamura M, Kotani T, Sakuma S, LaMarre J (2001) Effects of lipopolysaccharide on a macrophage-like cell line (HS-P) from a rat histiocytic sarcoma. J Comp Pathol 125:15–24

    CAS  PubMed  Google Scholar 

  53. Yamate J, Maeda Y, Tsukamoto Y, Benn SJ, Laithwaite JE, Allan A, Kannan Y, Ide M, Kuwamura M, Kotani T, Sakuma S, LaMarre J (2001) Macrophage-like cell line (HS-P) from a rat histiocytic sarcoma. J Comp Pathol 124:183–191

    Article  CAS  PubMed  Google Scholar 

  54. Yu S, Chen Z, Mix E, Zhu SW, Winblad B, Ljunggren HG, Zhu J (2002) Neutralizing antibodies to IL-18 ameliorate experimental autoimmune neuritis by counter-regulation of autoreactive Th1 responses to peripheral myelin antigen. J Neuropathol Exp Neurol 61:614–622

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported in part by Grant-in-Aid (No. 12660287) for Scientific Research C, the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yamate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamate, J., Yasui, H., Benn, S.J. et al. Characterization of newly established tumor lines from a spontaneous malignant schwannoma in F344 rats: nerve growth factor production, growth inhibition by transforming growth factor-β1, and macrophage-like phenotype expression. Acta Neuropathol 106, 221–233 (2003). https://doi.org/10.1007/s00401-003-0723-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0723-0

Keywords

Navigation