Skip to main content
Log in

Persistent eIF2α(P) is colocalized with cytoplasmic cytochrome c in vulnerable hippocampal neurons after 4 hours of reperfusion following 10-minute complete brain ischemia

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Upon brain reperfusion following ischemia, there is widespread inhibition of neuronal protein synthesis that is due to phosphorylation of eukaryotic initiation factor 2α (eIF2α), which persists in selectively vulnerable neurons (SVNs) destined to die. Other investigators have shown that expression of mutant eIF2α (S51D) mimicking phosphorylated eIF2α induces apoptosis, and expression of non-phosphorylatable eIF2α (S51A) blocks induction of apoptosis. An early event in initiating apoptosis is the release of cytochrome c from mitochondria, and cytochrome c release corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. At present the signaling pathways leading to this are not well defined. We hypothesized that persistent eIF2α(P) reflects injury mechanisms that are causally upstream of release of cytochrome c and induction of apoptosis. At 4 h of reperfusion following 10-min cardiac arrest, vulnerable neurons in the striatum, hippocampal hilus and CA1 showed colocalized intense immunostaining for both persistent eIF2α(P) and cytoplasmic cytochrome c, while resistant neurons in the dentate gyrus and elsewhere did not immunostain for either. A lower intensity of persistent eIF2α(P) immunostaining was present in cortical layer V pyramidal neurons without cytoplasmic cytochrome c, possibly reflecting the lesser vulnerability of this area to ischemia. We did not observe cytoplasmic cytochrome c in any neurons that did not also display persistent eIF2α(P) immunostaining. Because phosphorylation of eIF2α during early brain reperfusion is carried out by PERK, these findings suggest that there is prolonged activation of the unfolded protein response in the reperfused brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Alcazar A, Bazan E, Rivera J, Salinas M (1995) Phosphorylation of initiation factor 2 alpha subunit and apoptosis in Ca2+ ionophore-treated cultured neuronal cells. Neurosci Lett 201:215–218

    Article  PubMed  Google Scholar 

  2. Alirezaei M, Marin P, Nairn AC, Glowinski J, Premont J (2001) Inhibition of protein synthesis in cortical neurons during exposure to hydrogen peroxide. J Neurochem 76:1080–1088

    Article  PubMed  Google Scholar 

  3. Andreyev AY, Fahy B, Fiskum G (1998) Cytochrome-c release from brain mitochondria is independent of the mitochondrial permeability transition. FEBS Lett 439:373–376

    Article  PubMed  Google Scholar 

  4. Baksh S, Burns K, Andrin C, Michalak M (1995) Interaction of calreticulin with protein disulfide isomerase. J Biol Chem 270:31338–31344

    Article  PubMed  Google Scholar 

  5. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of GRP78 and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    CAS  PubMed  Google Scholar 

  6. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  PubMed  Google Scholar 

  7. Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C, Graham SH, Chen J (2001) Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21:321–333

    PubMed  Google Scholar 

  8. Cao G, Luo Y, Nagayama T, Pei W, Stetler RA, Graham SH, Chen J (2002) Cloning and characterization of rat caspase-9: implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. J Cereb Blood Flow Metab 22:534–546

    PubMed  Google Scholar 

  9. Clemens MJ (2001) Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol 27:57–89

    PubMed  Google Scholar 

  10. Corbett EF, Oikawa K, Francois P, Tessier DC, Kay C, Bergeron JJM, Thomas DY, Krause KH, Michalak M (1999) Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem 274:6203–6211

    Article  PubMed  Google Scholar 

  11. DeGracia DJ, O'Neil BJ, Krause GS, Skjaerlund JM, White BC, Grossman LI (1993) Studies of the protein synthesis system in the brain cortex during global ischemia and reperfusion. Resuscitation 25:161–170

    PubMed  Google Scholar 

  12. DeGracia DJ, Neumar RW, White BC, Krause GS (1996) Global brain ischemia and reperfusion: modifications in eukaryotic initiation factors are associated with inhibition of translation initiation. J Neurochem 67:2005–2012

    PubMed  Google Scholar 

  13. DeGracia DJ, Sullivan JM, Neumar RW, Alousi SS, Hikade KR, Pittman JE, White BC, Rafols JA, Krause GS (1997) Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2α. J Cereb Blood Flow Metab 17:1291–1302

    CAS  PubMed  Google Scholar 

  14. DeGracia DJ, Adamczyk S, Folbe AJ, Konkoly LL, Pittman JE, Neumar RW, Sullivan JM, Scheuner D, Kaufman RJ, White BC, Krause GS (1999) Eukaryotic initiation factor 2α kinase and phosphatase activity during post-ischemic brain reperfusion. Exp Neurol 155:221–227

    Article  PubMed  Google Scholar 

  15. DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC (2002) Molecular pathways of inhibited translation during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22:127–141

    PubMed  Google Scholar 

  16. Edmonds HL Jr, Raque GM Jr, Zhang PY, Jenkins SA, Sheilds CB (1989) Cerebroprotective effects of a parenteral flunarizine formulation. In: Hartmann A., Kuchinsky W (eds) Cerebral ischemia and calcium, Springer, Berlin, pp 494–500

  17. Gil J, Alcami J, Esteban M (1999) Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-κB. Mol Cell Biol 19:4653–4663

    PubMed  Google Scholar 

  18. Goldstein E, Owen C, White BC, Rafols JA (1999) Ultrastructural localization of phosphorylated eIF2α [eIF2α(P)] in rat dorsal hippocampus during reperfusion. Acta Neuropathol 98:493–505

    Article  PubMed  Google Scholar 

  19. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  PubMed  Google Scholar 

  20. Harding HP, Novoa II, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    PubMed  Google Scholar 

  21. Herdegen T, Claret FX, Kallunki T, Martin-Villalba A, Winter C, Hunter T, Karin MJ (1998) Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. Neuroscience 18:5124–5135

    PubMed  Google Scholar 

  22. Hu BR, Martone ME, Jones YZ, Liu CL (2000) Protein aggregation after transient cerebral ischemia. J Neurosci 20:3191–3199

    PubMed  Google Scholar 

  23. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, Siesjo BK, Liu CL (2001) Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21:865–875

    PubMed  Google Scholar 

  24. Hyslop PA, Zhang Z, Pearson DV, Phebus LA (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res 671:181–186

    Article  PubMed  Google Scholar 

  25. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational control. Genes Dev 13:1211–1233

    PubMed  Google Scholar 

  26. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    CAS  PubMed  Google Scholar 

  27. Kohno K, Higuchi T, Ohta S, Kohno K, Kumon Y, Sakaki S (1997) Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in gerbil. Neurosci Lett 224:17–20

    Article  PubMed  Google Scholar 

  28. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    PubMed  Google Scholar 

  29. Kulms D, Schwarz T (2002) Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol 64:837–841

    Article  PubMed  Google Scholar 

  30. Kumar R, Azam S, Sullivan JM, Owen CR, Cavener DR, Zhang P, Ron D, Harding HP, Chen JJ, Han A, White BC, Krause GS, DeGracia DJ (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J Neurochem 77:1418–1421

    Article  PubMed  Google Scholar 

  31. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    Google Scholar 

  32. Lewén A, Fujimura M, Sugawara T, Matz P, Copin JC, Chan PH (2001) Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. J Cereb Blood Flow Metab 21:914–920

    PubMed  Google Scholar 

  33. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    CAS  PubMed  Google Scholar 

  34. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  35. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    CAS  PubMed  Google Scholar 

  36. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An ER stress-specific caspase cascade in apoptosis: cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294

    Article  PubMed  Google Scholar 

  37. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yanker BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Google Scholar 

  38. Neumar RW, DeGracia DJ, Konkoly LL, White BC, Krause GS (1998) Calpain I mediates eukaryotic initiation factor 4G degradation during global brain ischemia. J Cereb Blood Flow Metab 18:876–881

    PubMed  Google Scholar 

  39. Niwa M, Walter P (2000) Pausing to decide. Proc Natl Acad Sci USA 97:12396–12397

    Article  PubMed  Google Scholar 

  40. Noshita N, Sugawara T, Fujimura M, Morita-Fujimura Y, Chan, PH (2001) Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:557–567

    PubMed  Google Scholar 

  41. Oliver JD, Roderick HL, Llewellyn DH, High S (1999) Erp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 10:2573–2582

    PubMed  Google Scholar 

  42. Oyadomari S, Takeda K, Takiguchi M, Gotoh, T, Matsumoto M, Wada I, Akira S, Araki E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic β cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  PubMed  Google Scholar 

  43. Paschen W (1996) Disturbances of calcium homeostasis within the endoplasmic reticulum may contribute to the development of ischemic-cell damage. Med Hypotheses 47:283–288

    PubMed  Google Scholar 

  44. Paschen W (2000) Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res Bull 53:409–413

    Article  PubMed  Google Scholar 

  45. Paschen W, Gissel C, Linden T, Althausen S, Doutheil J (1998) Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res Mol Brain Res 60:115–122

    Article  PubMed  Google Scholar 

  46. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    CAS  PubMed  Google Scholar 

  47. Rafols JA, O'Neil BJ, Krause GS, Neumar RW, White BC (1995) Global brain ischemia and reperfusion: Golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta Neuropathol (Berl) 30:17–30

    Google Scholar 

  48. Rao RV, Hermel E, Castro-Obregon S, Rio G del, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869–33874

    Article  PubMed  Google Scholar 

  49. Sadowski M, Wisniewski HM, Jakubowska-Sadowska K, Tarnawski M, Lazarewicz JW, Mossakowski MJ (1999) Pattern of neuronal loss in the rat hippocampus following experimental cardiac arrest-induced ischemia. J Neurol Sci 168:13–20

    Article  PubMed  Google Scholar 

  50. Saelens X, Kalai M, Vandenabeele P (2001) Translation inhibition in apoptosis. Caspase-dependent PKR activation and eIF2-α phosphorylation. J Biol Chem 276:41620–41628

    Article  PubMed  Google Scholar 

  51. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176

    CAS  PubMed  Google Scholar 

  52. Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152:237–250

    Google Scholar 

  53. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    PubMed  Google Scholar 

  54. Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526

    Article  PubMed  Google Scholar 

  55. Skjaerlund JM, Krause GS, Feldman DM, White BC (1991) The effect of ethyl-methyl-hydroxy-pyrid-4-one on post-cardiac arrest survival of rats. Resuscitation 22:139–149

    PubMed  Google Scholar 

  56. Srivastava SP, Kumar KU, Kaufman RJ (1998) Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 273:2416–2423

    Article  PubMed  Google Scholar 

  57. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB (1998) Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett 429:351–355

    Article  PubMed  Google Scholar 

  58. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC39

    CAS  PubMed  Google Scholar 

  59. Takagi Y, Nozaki K, Sugino T, Hattori I, Hashimoto N (2000) Phosphorylation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase after transient forebrain ischemia in mice. Neurosci Lett 294:117–120

    Article  CAS  PubMed  Google Scholar 

  60. Takeyama N, Miki S, Hirakawa A, Tanaka T (2002) Role of the mitochondrial permeability transition and cytochrome c release in hydrogen peroxide-induced apoptosis. Exp Cell Res 274:16–24

    Article  PubMed  Google Scholar 

  61. Totoh T, Oyadomari S, Mori K, Mori M (2002) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J Biol Chem 277:12343–12350

    Article  PubMed  Google Scholar 

  62. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  PubMed  Google Scholar 

  63. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  Google Scholar 

  64. Wauquier A, Melis W, Janssen PAJ (1989) Long-term neurological assessment of the post-resuscitation effects of flunarizine, verapamil and nimodipine in a new model of global complete ischaemia. Neuropharmacology 28:837–846

    Article  PubMed  Google Scholar 

  65. White BC, Daya A, DeGracia DJ, O'Neil BJ, Skjaerlund JM, Krause GS, Rafols JA (1993) Fluorescent histochemical localization of lipid peroxidation during brain reperfusion following cardiac arrest. Acta Neuropathol 86:1–9

    PubMed  Google Scholar 

  66. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33

    Article  PubMed  Google Scholar 

  67. Yang JC, Cortopassi GA (1998) Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med 24:624–631

    Article  PubMed  Google Scholar 

  68. Yin XM, Luo Y, Cao G, Bai L, Pei W, Kuharsky DK, Chen J (2002) Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia. J Biol Chem 277:42074–42081

    Article  PubMed  Google Scholar 

  69. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–13940

    PubMed  Google Scholar 

  70. Yu ZF, Luo H, Fu W, Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155:302–314.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Supported by NIH-NINDS grant NS33196 (G.S.K., D.J.D., C.R.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, A.B., Owen, C.R., Kumar, R. et al. Persistent eIF2α(P) is colocalized with cytoplasmic cytochrome c in vulnerable hippocampal neurons after 4 hours of reperfusion following 10-minute complete brain ischemia. Acta Neuropathol 106, 8–16 (2003). https://doi.org/10.1007/s00401-003-0693-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0693-2

keywords

Navigation