Skip to main content

Advertisement

Log in

Omega-3 fatty acid intake and decreased risk of skin cancer in organ transplant recipients

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Organ transplant recipients have over 100-fold higher risk of developing skin cancer than the general population and are in need of further preventive strategies. We assessed the possible preventive effects of omega-3 polyunsaturated fatty acid (PUFA) intake from food on the two main skin cancers, squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in kidney and liver transplant recipients.

Methods

Adult kidney or liver transplant recipients transplanted for at least 1 year and at high risk of skin cancer were recruited from the main transplant hospital in Queensland, 2012–2014 and followed until mid-2016. We estimated their dietary total long-chain omega-3 PUFAs and α-linolenic acid intakes at baseline using a food frequency questionnaire and ranked PUFA intakes as low, medium, or high. Relative risks (RRsadj) of skin cancer adjusted for confounding factors with 95% confidence intervals (CIs) were calculated.

Results

There were 449 transplant recipients (mean age, 55 years; 286 (64%) male). During follow-up, 149 (33%) patients developed SCC (median 2/person; range 1–40) and 134 (30%), BCC. Transplant recipients with high total long-chain omega-3 PUFA compared with low intakes showed substantially reduced SCC tumour risk (RRadj 0.33, 95% CI 0.18–0.60), and those with high α-linolenic acid intakes experienced significantly fewer BCCs (RRadj 0.40, 95% CI 0.22–0.74). No other significant associations were seen.

Conclusion

Among organ transplant recipients, relatively high intakes of long-chain omega-3 PUFAs and of α-linolenic acid may reduce risks of SCC and BCC, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due to confidentiality of clinical data belonging to the small numbers of hospital patients involved but are available from the corresponding author on reasonable request.

References

  1. Krynitz B, Edgren G, Lindelöf B, Baecklund E, Brattström C, Wilczek H, Smedby KE (2013) Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970 to 2008–a Swedish population-based study. Int J Cancer 132(6):1429–1438. https://doi.org/10.1002/ijc.27765

    Article  CAS  PubMed  Google Scholar 

  2. Plasmeijer EI, Jiyad Z, Way M, Marquart L, Miura K, Campbell S, Isbel N, Fawcett J, Ferguson LE, Davis M, Whiteman DC, Soyer HP, O'Rourke P, Green AC (2019) Extreme incidence of skin cancer in kidney and liver transplant recipients living with high sun exposure. Acta Derm Venereol 99(10):929–930. https://doi.org/10.2340/00015555-3234

    Article  CAS  PubMed  Google Scholar 

  3. Pandeya N, Olsen CM, Whiteman DC (2017) The incidence and multiplicity rates of keratinocyte cancers in Australia. Med J Aust 207(8):339–343

    Article  Google Scholar 

  4. Euvrard S, Kanitakis J, Claudy A (2003) Skin cancers after organ transplantation. N Engl J Med 348(17):1681–1691. https://doi.org/10.1056/NEJMra022137

    Article  PubMed  Google Scholar 

  5. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370(9581):59–67. https://doi.org/10.1016/S0140-6736(07)61050-2

    Article  PubMed  Google Scholar 

  6. Madeleine MM, Patel NS, Plasmeijer EI, Engels EA, Bouwes Bavinck JN, Toland AE, Green AC (2017) Epidemiology of keratinocyte carcinomas after organ transplantation. Br J Dermatol 177(5):1208–1216. https://doi.org/10.1111/bjd.15931

    Article  CAS  PubMed  Google Scholar 

  7. Blomberg M, He SY, Harwood C, Arron ST, Demehri S, Green A, Asgari MM (2017) Research gaps in the management and prevention of cutaneous squamous cell carcinoma in organ transplant recipients. Br J Dermatol 177(5):1225–1233. https://doi.org/10.1111/bjd.15950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iannacone MR, Pandeya N, Isbel N, Campbell S, Fawcett J, Soyer HP, Ferguson L, Davis M, Whiteman DC, Green AC (2015) Sun protection behavior in organ transplant recipients in Queensland, Australia. Dermatology 231(4):360–366. https://doi.org/10.1159/000439428

    Article  PubMed  Google Scholar 

  9. Black HS, Rhodes LE (2016) Potential benefits of omega-3 fatty acids in non-melanoma skin cancer. J Clin Med. https://doi.org/10.3390/jcm5020023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balić A, Mokos M (2019) Do we utilize our knowledge of the skin protective effects of carotenoids enough? Antioxidants 8(8):259. https://doi.org/10.3390/antiox8080259

    Article  CAS  PubMed Central  Google Scholar 

  11. Jansen R, Wang SQ, Burnett M, Osterwalder U, Lim HW (2013) Photoprotection: part I. Photoprotection by naturally occurring, physical, and systemic agents. J Am Acad Dermatol 69(6):853.e851–812. https://doi.org/10.1016/j.jaad.2013.08.021(quiz 865-856)

    Article  CAS  Google Scholar 

  12. Shapira N (2010) Nutritional approach to sun protection: a suggested complement to external strategies. Nutr Rev 68(2):75–86. https://doi.org/10.1111/j.1753-4887.2009.00264.x

    Article  PubMed  Google Scholar 

  13. Griffiths HR, Mistry P, Herbert KE, Lunec J (1998) Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 35(3):189–237. https://doi.org/10.1080/10408369891234192

    Article  CAS  PubMed  Google Scholar 

  14. Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffell DJ (1996) Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J Investig Dermatol Symp Proc 1(2):136–142

    CAS  PubMed  Google Scholar 

  15. Nicolaou A, Pilkington S, Rhodes L (2011) Ultraviolet-radiation induced skin inflammation: dissecting the role of bioactive lipids. Chem Phys Lipids 164(6):535–543. https://doi.org/10.1016/j.chemphyslip.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  16. Nichols J, Katiyar S (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302(2):71–83. https://doi.org/10.1007/s00403-009-1001-3

    Article  CAS  PubMed  Google Scholar 

  17. Miura K, Vail A, Chambers D, Hopkins PM, Ferguson L, Grant M, Rhodes LE, Green AC (2019) Omega-3 fatty acid supplement skin cancer prophylaxis in lung transplant recipients: a randomized, controlled pilot trial. J Heart Lung Transplant 38(1):59–65. https://doi.org/10.1016/j.healun.2018.09.009

    Article  PubMed  Google Scholar 

  18. Pilkington S, Watson R, Nicolaou A, Rhodes L (2011) Omega-3 polyunsaturated fatty acids: photoprotective macronutrients. Exp Dermatol 20(7):537–543. https://doi.org/10.1111/j.1600-0625.2011.01294.x

    Article  CAS  PubMed  Google Scholar 

  19. Pilkington SM, Massey KA, Bennett SP, Al-Aasswad NM, Roshdy K, Gibbs NK, Friedmann PS, Nicolaou A, Rhodes LE (2013) Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses. Am J Clin Nutr 97(3):646–652. https://doi.org/10.3945/ajcn.112.049494

    Article  CAS  PubMed  Google Scholar 

  20. Fortes C, Mastroeni S, Melchi F, Pilla MA, Antonelli G, Camaioni D, Alotto M, Pasquini P (2008) A protective effect of the Mediterranean diet for cutaneous melanoma. Int J Epidemiol 37(5):1018–1029. https://doi.org/10.1093/ije/dyn132

    Article  CAS  PubMed  Google Scholar 

  21. Kune GA, Bannerman S, Field B, Watson LF, Cleland H, Merenstein D, Vitetta L (1992) Diet, alcohol, smoking, serum beta-carotene, and vitamin A in male nonmelanocytic skin cancer patients and controls. Nutr Cancer 18(3):237–244. https://doi.org/10.1080/01635589209514224

    Article  CAS  PubMed  Google Scholar 

  22. Hakim IA, Harris RB, Ritenbaugh C (2000) Fat Intake and risk of squamous cell carcinoma of the skin. Nutr Cancer 36(2):155–162. https://doi.org/10.1207/S15327914NC3602_3

    Article  CAS  PubMed  Google Scholar 

  23. Iannacone MR, Sinnya S, Pandeya N, Isbel N, Campbell S, Fawcett J, Soyer PH, Ferguson L, Davis M, Whiteman DC, Green AC (2016) Prevalence of skin cancer and related skin tumors in high-risk kidney and liver transplant recipients in Queensland, Australia. J Invest Dermatol 136(7):1382–1386. https://doi.org/10.1016/j.jid.2016.02.804

    Article  CAS  PubMed  Google Scholar 

  24. Marks GC, Hughes MC, van der Pols JC (2006) The effect of personal characteristics on the validity of nutrient intake estimates using a food-frequency questionnaire. Public Health Nutr 9(3):394–402. https://doi.org/10.1079/PHN2005839

    Article  PubMed  Google Scholar 

  25. Marks GC, Hughes MC, van der Pols JC (2006) Relative validity of food intake estimates using a food frequency questionnaire is associated with sex, age, and other personal characteristics. J Nutr 136(2):459–465

    Article  CAS  Google Scholar 

  26. Ibiebele TI, Parekh S, Mallitt K-a, Hughes MC, O’Rourke PK, Webb PM (2009) Reproducibility of food and nutrient intake estimates using a semi-quantitative FFQ in Australian adults. Public Health Nutr 12(12):2359–2365. https://doi.org/10.1017/S1368980009005023

    Article  PubMed  Google Scholar 

  27. Food Standards Australia New Zealand (2011) NUTTAB 2010 electronic database files—Australian Food Composition Tables. www.foodstandards.gov.au

  28. Gardner W, Mulvey EP, Shaw EC (1995) Regression analyses of counts and rates: poisson, overdispersed Poisson, and negative binomial models. Psychol Bull 118(3):392–404. https://doi.org/10.1037/0033-2909.118.3.392

    Article  CAS  PubMed  Google Scholar 

  29. Zou G (2004) A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 159(7):702–706. https://doi.org/10.1093/aje/kwh090

    Article  PubMed  Google Scholar 

  30. Mishra G, Ball K, Arbuckle J, Crawford D (2002) Dietary patterns of Australian adults and their association with socioeconomic status: results from the 1995 National Nutrition Survey. Eur J Clin Nutr 56(7):687–693. https://doi.org/10.1038/sj.ejcn.1601391

    Article  CAS  PubMed  Google Scholar 

  31. Worsley A, Blaschea R, Ball K, Crawford D (2004) The relationship between education and food consumption in the 1995 Australian National Nutrition Survey. Public Health Nutr 7(05):649–663. https://doi.org/10.1079/PHN2003577

    Article  PubMed  Google Scholar 

  32. Textor J, Hardt J, Knüppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology 22(5):745. https://doi.org/10.1097/EDE.0b013e318225c2be

    Article  PubMed  Google Scholar 

  33. Greenland S (1989) Modeling and variable selection in epidemiologic analysis. Am J Public Health 79(3):340–349

    Article  CAS  Google Scholar 

  34. Dickinson A, MacKay D (2014) Health habits and other characteristics of dietary supplement users: a review. Nutr J 13(1):14. https://doi.org/10.1186/1475-2891-13-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bailey RL, Dodd KW, Gahche JJ, Dwyer JT, Cowan AE, Jun S, Eicher-Miller HA, Guenther PM, Bhadra A, Thomas PR, Potischman N, Carroll RJ, Tooze JA (2019) Best practices for dietary supplement assessment and estimation of total usual nutrient intakes in population-level research and monitoring. J Nutr 149(2):181–197. https://doi.org/10.1093/jn/nxy264

    Article  PubMed  PubMed Central  Google Scholar 

  36. VanderWeele TJ, Ding P (2017) Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 167(4):268–274. https://doi.org/10.7326/m16-2607

    Article  PubMed  Google Scholar 

  37. Haneuse S, VanderWeele TJ, Arterburn D (2019) Using the E-value to assess the potential effect of unmeasured confounding in observational studies. JAMA 321(6):602–603. https://doi.org/10.1001/jama.2018.21554

    Article  Google Scholar 

  38. Ding P, VanderWeele TJ (2016) Sensitivity analysis without assumptions. Epidemiology 27(3):368–377. https://doi.org/10.1097/ede.0000000000000457

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sabbatini M, Apicella L, Cataldi M, Maresca I, Nastasi A, Vitale S, Memoli B, Postiglione L, Riccio E, Gallo R, Federico S, Guida B (2013) Effects of a diet rich in n-3 polyunsaturated fatty acids on systemic inflammation in renal transplant recipients. J Am Coll Nutr 32(6):375–383. https://doi.org/10.1080/07315724.2013.826482

    Article  CAS  PubMed  Google Scholar 

  40. Rhodes LE, Shahbakhti H, Azurdia RM, Moison RM, Steenwinkel MJ, Homburg MI, Dean MP, McArdle F, Beijersbergen van Henegouwen GM, Epe B, Vink AA (2003) Effect of eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, on UVR-related cancer risk in humans. An assessment of early genotoxic markers. Carcinogenesis 24(5):919–925

    Article  CAS  Google Scholar 

  41. Noel SE, Stoneham ACS, Olsen CM, Rhodes LE, Green AC (2014) Consumption of omega-3 fatty acids and the risk of skin cancers: a systematic review and meta-analysis. Int J Cancer 135(1):149–156. https://doi.org/10.1002/ijc.28630

    Article  CAS  PubMed  Google Scholar 

  42. Burdge GC, Calder PC (2006) Dietary alpha-linolenic acid and health-related outcomes: a metabolic perspective. Nutr Res Rev 19(1):26–52. https://doi.org/10.1079/nrr2005113

    Article  CAS  PubMed  Google Scholar 

  43. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC (2008) Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc 67(01):19–27. https://doi.org/10.1017/S0029665108005983

    Article  CAS  PubMed  Google Scholar 

  44. Brenna JT, Salem N, Sinclair AJ, Cunnane SC (2009) α-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80(2):85–91. https://doi.org/10.1016/j.plefa.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  45. Lopez-Garcia E, Schulze MB, Manson JE, Meigs JB, Albert CM, Rifai N, Willett WC, Hu FB (2004) Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J Nutr 134(7):1806–1811. https://doi.org/10.1093/jn/134.7.1806

    Article  CAS  PubMed  Google Scholar 

  46. Rajaram S (2014) Health benefits of plant-derived alpha-linolenic acid. Am J Clin Nutr 100(Suppl 1):443s–448s. https://doi.org/10.3945/ajcn.113.071514

    Article  CAS  PubMed  Google Scholar 

  47. Takemura N, Takahashi K, Tanaka H, Ihara Y, Ikemoto A, Fujii Y, Okuyama H (2002) Dietary, but not topical, alpha-linolenic acid suppresses UVB-induced skin injury in hairless mice when compared with linoleic acids. Photochem Photobiol 76(6):657–663. https://doi.org/10.1562/0031-8655(2002)

    Article  CAS  PubMed  Google Scholar 

  48. National Health and Medical Research Council (NHMRC) (2006) Nutrient reference values for Australia and New Zealand including recommended dietary intakes. Australian Government Department of Health and Ageing, Canberra

    Google Scholar 

  49. Australian Bureau of Statistics (2015) Australian health survey: usual nutrient intakes, 2011–12. Australian Bureau of Statistics, Camberra

    Google Scholar 

  50. Thompson FE, Subar AF (2017) Dietary assessment methodology. In: Coulston A, Boushey C, Ferruzzi M, Delahanty L (eds) Nutrition in the prevention and treatment of disease, 4 edn. Academic Press, London, pp 5–48

    Chapter  Google Scholar 

Download references

Funding

This study was supported by the National Health and Medical Research Council of Australia (Grants 552429 and 1073898) who had no involvement in any aspect of study design, conduct or writing of the manuscript. KM was supported by the NHMRC Program Grant (No. 552429 & 1073898) and NHMRC Centres of Research Excellence Grant (APP1040947). DW was supported by a Research Fellowship from the NHMRC (APP1155413; APP1058522).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: ACG, DW obtained funding. KM and ACG conceived the study. ZJ, EIP, SC, NI, JF, MD, HPS contributed to the data collection. MW and KM managed the data. KM analysed the data and interpreted the results with support from all authors. KM wrote the manuscript. All authors provided critical feedback and helped shape the research and manuscript. All authors approved the final version submitted for publication.

Corresponding author

Correspondence to Kyoko Miura.

Ethics declarations

Conflicts of interest

The authors state no conflict of interest.

Ethical standards

Ethical approval for the study was obtained from the Ethics committee of the QIMR Berghofer Medical Research Institute. All participants provided written informed consent in accordance with the Declaration of Helsinki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 12 kb)

Supplementary file2 (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, K., Way, M., Jiyad, Z. et al. Omega-3 fatty acid intake and decreased risk of skin cancer in organ transplant recipients. Eur J Nutr 60, 1897–1905 (2021). https://doi.org/10.1007/s00394-020-02378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02378-y

Keywords

Navigation