Skip to main content

Advertisement

Log in

The neurobiology and behavior of the American water shrew (Sorex palustris)

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

American water shrews (Sorex palustris) are aggressive predators that dive into streams and ponds to find prey at night. They do not use eyesight for capturing fish or for discriminating shapes. Instead they make use of vibrissae to detect and attack water movements generated by active prey and to detect the form of stationary prey. Tactile investigations are supplemented with underwater sniffing. This remarkable behavior consists of exhalation of air bubbles that spread onto objects and are then re-inhaled. Recordings for ultrasound both above and below water provide no evidence for echolocation or sonar, and presentation of electric fields and anatomical investigations provide no evidence for electroreception. Counts of myelinated fibers show by far the largest volume of sensory information comes from the trigeminal nerve compared to optic and cochlear nerves. This is in turn reflected in the organization of the water shrew’s neocortex, which contains two large somatosensory areas and much smaller visual and auditory areas. The shrew’s small brain with few cortical areas may allow exceptional speed in processing sensory information and producing motor output. Water shrews can accurately attack the source of a water disturbance in only 50 ms, perhaps outpacing any other mammalian predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albers KM, Perrone TN, Goodness TP, Jones ME, Green MA, Davis BM (1996) Cutaneous overexpression of NT-3 increases sensory and sympathetic neuron number and enhances touch dome and hair follicle innervation. J Cell Biol 134(2):487–497

    Article  PubMed  CAS  Google Scholar 

  • Andres KH, von Düring M, Iggo A, Proske U (1991) The anatomy and fine-structure of the echidna tachyglossus-aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol (Berl) 184(4):371–393

    Article  CAS  Google Scholar 

  • Anniko M, Arnesen AR (1988) Cochlear nerve topography and fiber spectrum in the pigmented mouse. Arch Otorhinolaryngol 245(3):155–159

    Article  PubMed  CAS  Google Scholar 

  • Azzopardi P, Cowey A (1993) Preferential representation of the fovea in the primary visual-cortex. Nature 361(6414):719–721

    Article  PubMed  CAS  Google Scholar 

  • Banfield AWF (1974) The mammals of Canada. University of Toronto Press, Toronto

    Google Scholar 

  • Brecht M, Naumann R, Anjum F, Wolfe J, Munz M, Mende C, Roth-Alpermann C (2011) The neurobiology of etruscan shrew active touch. Proc Roy Soc B 366(1581):3026–3036

    Google Scholar 

  • Catania KC (2000) Cortical organization in insectivora: the parallel evolution of the sensory periphery and the brain. Brain Behav Evol 55(6):311–321

    Article  PubMed  CAS  Google Scholar 

  • Catania KC (2006) Olfaction: underwater ‘sniffing’ by semi-aquatic mammals. Nature 444(7122):1024–1025. doi:10.1038/4441024a

    Article  PubMed  CAS  Google Scholar 

  • Catania KC (2009a) Symposium overview: underwater sniffing guides olfactory localization in semi aquatic mammals. Ann N Y Acad Sci 1170:407–412. doi:10.1111/j.1749-6632.2009.03925.x

    Article  PubMed  Google Scholar 

  • Catania KC (2009b) Tentacled snakes turn C-starts to their advantage and predict future prey behavior. Proc Natl Acad Sci USA 106(27):11183–11187. doi:10.1073/pnas.0905183106

    Article  PubMed  CAS  Google Scholar 

  • Catania KC, Kaas JH (1997) Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation. J Comp Neurol 387(2):215–233

    Article  PubMed  CAS  Google Scholar 

  • Catania KC, Lyon DC, Mock OB, Kaas JH (1999) Cortical organization in shrews: evidence from five species. J Comp Neurol 410(1):55–72

    Article  PubMed  CAS  Google Scholar 

  • Catania KC, Hare JF, Campbell KL (2008) Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci USA 105(2):571–576. doi:10.1073/pnas.0709534104

    Article  PubMed  CAS  Google Scholar 

  • Conaway CH (1952) Life history of the water shrew. Am Midl Nat 48(1):219–248

    Article  Google Scholar 

  • Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2012) Electroreception in the Guiana dolphin (Sotalia guianensis). Proc Roy Soc B 279(1729):663–668. doi:10.1098/rspb.2011.1127

    Article  Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, Oxford

    Google Scholar 

  • Dehnhardt G, Hyvarinen H, Palviainen A, Klauer G (1999) Structure and innervation of the vibrissal follicle-sinus complex in the Australian water rat, Hydromys chrysogaster. J Comp Neurol 411(4):550–562

    Article  PubMed  CAS  Google Scholar 

  • Ebner FF (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann N Y Acad Sci 167(A1):241–242

    Google Scholar 

  • Estes JA (1989) Adaptations for aquatic living by carnivores. Cornell University Press, Ithaca

    Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tissue Res 229(3):483–503

    Article  PubMed  CAS  Google Scholar 

  • Gebo DL (2004) A shrew-sized origin for primates. Am J Phys Anthropol 40–62. doi:10.1002/Ajpa.20154

  • Glezer II, Jacobs MS, Morgane PJ (1988) The initial brain concept and its implications for brain evolution in cetacea. Behav Brain Sci 11(1):75–89

    Article  Google Scholar 

  • Glue DE (1970) Avian predator pellet analysis and the mammalogist. Mamm Rev 1(3):53–62. doi:10.1111/j.1365-2907.1970.tb00320.x

    Article  Google Scholar 

  • Gould E, Negus NC, Novick A (1964) Evidence for echolocation in shrews. J Exp Zool 156:19–37

    Article  PubMed  CAS  Google Scholar 

  • Jablonski PG (2001) Sensory exploitation of prey: manipulation of the initial direction of prey escapes by a conspicuous ‘rare enemy’. Proc Roy Soc B 268(1471):1017–1022

    Article  CAS  Google Scholar 

  • Jablonski PG, McInerney C (2005) Prey escape direction is influenced by the pivoting displays of flush-pursuing birds. Ethology 111(4):381–396

    Article  Google Scholar 

  • Jablonski PG, Strausfeld NJ (2000) Exploitation of an ancient escape circuit by an avian predator: prey sensitivity to model predator display in the field. Brain Behav Evol 56(2):94–106

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Qi HX, Catania KC, Kaas JH (2001) Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. J Comp Neurol 429(3):455–468

    Article  PubMed  CAS  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18(21):8936–8946

    PubMed  CAS  Google Scholar 

  • Kaas JH (1987) The organization of neocortex in mammals—implications for theories of brain-function. Annu Rev Psychol 38:129–151

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1(1):7–23. doi:10.1023/a:1010028405318

    Article  Google Scholar 

  • Kaas J, Hall WC, Diamond IT (1970) Cortical visual areas I and II in hedgehog—relation between evoked potential maps and architectonic subdivisions. J Neurophysiol 33(5):595–615

    Google Scholar 

  • Kepecs A, Uchida N, Mainen ZF (2006) The sniff as a unit of olfactory processing. Chem Senses 31(2):167–179. doi:10.1093/Chemsce/Bjj016

    Article  PubMed  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo ZX (2004) Mammals from the age of the dinosaurs: origins, evolution, and structure. Columbia University Press, New York

    Google Scholar 

  • Leitch DB, Gauthier D, Sarko DK, Catania KC (2011) Chemoarchitecture of layer 4 isocortex in the American water shrew (Sorex palustris). Brain Behav Evol 78(4):261–271. doi:10.1159/000330832

    Article  PubMed  Google Scholar 

  • Lende RA (1969) A comparative approach to neocortex -localization in monotremes, marsupials and insectivores. Ann N Y Acad Sci 167(A1):262–276

    Google Scholar 

  • Michaloudi H, Dinopoulos A, Karamanlidis AN, Papadopoulos GC, Antonopoulos J (1988) Cortical and brain-stem projections to the spinal-cord of the hedgehog (Erinaceus-europaeus)—a horseradish-peroxidase study. Anat Embryol (Berl) 178(3):259–270

    Article  CAS  Google Scholar 

  • Naumann RK, Anjum F, Roth-Alpermann C, Brecht M (2012) Cytoarchitecture, areas, and neuron numbers of the etruscan shrew cortex. J Comp Neurol 520(11):2512–2530. doi:10.1002/Cne.23053

    Article  PubMed  CAS  Google Scholar 

  • Nemec P, Cvekova P, Burda H, Benada O, Peichl L (2007) Visual systems and the role of vision in subterranean rodents: diversity of retinal properties and visual system designs. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents. Springer, New York, pp 128–160

    Google Scholar 

  • Nudo RJ, Masterton RB (1990) Descending pathways to the spinal-cord. 3. Sites of origin of the corticospinal tract. J Comp Neurol 296(4):559–583

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202(10):1447–1454

    PubMed  CAS  Google Scholar 

  • Ramprashad F, Money KE, Landolt JP, Laufer J (1978) A neuroanatomical study of the cochlea of the little brown bat (Myotis lucifugus). J Comp Neurol 178(2):347–363. doi:10.1002/cne.901780209

    Article  PubMed  CAS  Google Scholar 

  • Regidor J, Divac I (1992) Bilateral thalamocortical projection in hedgehogs—evolutionary implications. Brain Behav Evol 39(5):265–269

    Article  PubMed  CAS  Google Scholar 

  • Repenning CA (1976) Adaptive evolution of sea lions and walruses. Syst Zool 25(4):375–390

    Article  Google Scholar 

  • Roman WG, MacArthur RA, Campbell KL (2012) Dive performance and aquatic thermoregulation of the world’s smallest mammalian diver, the American water shrew (Sorex palustris). Soc Exp Biol Abstracts A4.4:110

    Google Scholar 

  • Rosa MGP, Krubitzer LA (1999) The evolution of visual cortex: where is V2? Trends Neurosci 22(6):242–248

    Article  PubMed  CAS  Google Scholar 

  • Roth-Alpermann C, Anjum F, Naumann R, Brecht M (2010) Cortical organization in the etruscan shrew (Suncus etruscus). J Neurophysiol 104(5):2389–2406. doi:10.1152/Jn.00762.2009

    Article  PubMed  Google Scholar 

  • Siemers BM, Schauermann G, Turni H, von Merten S (2009) Why do shrews twitter? Communication or simple echo-based orientation. Biol Lett 5(5):593–596. doi:10.1098/rsbl.2009.0378

    Article  PubMed  Google Scholar 

  • Sorenson MW (1962) Some aspects of water shrew behavior. Am Nat 68:445–462

    Article  Google Scholar 

  • Stephan H, Baron G, Fons R (1984) Brains of soricidae. 2. Volume comparison of brain components. Zeitschrift Fur Zoologische Systematik Und Evolutionsforschung 22(4):328–342

    Article  Google Scholar 

  • Strait SG, Smith SC (2006) Elemental analysis of soricine enamel: pigmentation variation and distribution in molars of Blarina brevicauda. J Mammal 87(4):700–705

    Article  Google Scholar 

  • Suga N, Jen PHS (1976) Disproportionate tonotopic representation for processing Cf-Fm sonar signals in mustache bat auditory-cortex. Science 194(4264):542–544

    Article  PubMed  CAS  Google Scholar 

  • Uchida N, Kepecs A, Mainen ZF (2006) Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7(6):485–491. doi:10.1038/nrn1933

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Facalvalverde MV (1986) Neocortical layer-I and layer-II of the hedgehog (Erinaceus europaeus). 1. Intrinsic organization. Anat Embryol (Berl) 173(3):413–430

    Article  CAS  Google Scholar 

  • Welker WI (1964) Analysis of sniffing of the albino rat. Behaviour 22(3/4):223–244

    Article  Google Scholar 

  • Welker E, Van der Loos H (1986) Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad—a comparative-study in 6 strains of mice bred for different patterns of mystacial vibrissae. J Neurosci 6(11):3355–3373

    PubMed  CAS  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213(Pt 13):2194–2200. doi:10.1242/jeb.041699

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Strom RC, Rice DS, Goldowitz D (1996) Genetic and environmental control of variation in retinal ganglion cell number in mice. J Neurosci 16(22):7193–7205

    PubMed  CAS  Google Scholar 

  • Wong-Riley MT, Carroll EW (1984) Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey. J Comp Neurol 222:18–37

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970) Structural organization of layer-Iv in somatosensory region (SI) of mouse cerebral cortex. Description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Catania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catania, K.C. The neurobiology and behavior of the American water shrew (Sorex palustris). J Comp Physiol A 199, 545–554 (2013). https://doi.org/10.1007/s00359-012-0781-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0781-7

Keywords

Navigation