Skip to main content
Log in

The green algal eyespot apparatus: a primordial visual system and more?

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Most flagellate green algae exhibiting phototaxis posses a singular specialized light sensitive organelle, the eyespot apparatus (EA). Its design principles are similar in all green algae and produce, in conjunction with the movement pattern of the cell, a highly directional optical device. It enables an oriented movement response with respect to the direction and intensity of light. The functional EA involves local specializations of different compartments (plasma membrane, cytosol, and chloroplast) and utilizes specialized microbial-type rhodopsins, which act as directly light-gated ion channels. Due to their elaborate structures and the presence of retinal-based photoreceptors in some lineages, algal EAs are thought to play an important role in the evolution of photoreception and are thus not only of interest to plant biologists. In green algae considerable progress in the molecular dissection of components of this primordial visual system has been made by genetic and proteomic approaches in recent years. This review summarizes general aspects of the green algal EA as well as recent progress in the identification of proteins related to it. Further, novel data supporting a link between eyespot globules and plastoglobules will be presented and potential additional roles of the EA besides those in photoreception will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albertano P, Barsanti L, Passarelli V, Gualtieri P (2000) A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp. Micron 31:27–34

    PubMed  CAS  Google Scholar 

  • Allmer J, Naumann B, Markert C, Zhang M, Hippler m (2006) Mass spectrometric genomic data mining: novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Proteomics 6:6207–6220

    PubMed  CAS  Google Scholar 

  • Andersen RA, Barr DJS, Lynn DH, Melkonian M, Moestrup Ø, Sleigh MA (1991) Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164:1–8

    Google Scholar 

  • Arnott HJ, Brown RM Jr (1967) Ultrastructure of the eyespot and its possible significane in phototaxis of Tetracystis excentrica. J Protozool 14:529–539

    Google Scholar 

  • Austin JR 2nd, Frost E, Vidi P-A, Kessler F, Staehlin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694

    PubMed  CAS  Google Scholar 

  • Beckmann M, Hegemann P (1991) In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry 30:3692–3697

    PubMed  CAS  Google Scholar 

  • Beech PL, Heimann K, Melkonian M (1991) Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma 164:23–37

    Google Scholar 

  • Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    PubMed  CAS  Google Scholar 

  • Bonora A, Pancaldi S, Gualandri R, Fasulo MP (2000) Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening. J Exp Botany 51:873–884

    CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J-D (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104

    PubMed  CAS  Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    PubMed  Google Scholar 

  • Brown PJP, Zakryś B, Farmer MA (2003) Plastid morphology, ultrastructure, and development in Colacium and the loricate Euglenophytes (Euglenophyceae). J Phycol 39:115–121

    Google Scholar 

  • Cáceres EJ, Parodi ER (1998) Fine structure of zoosporegenesis, zoospore germination, and early gametophyte development in Cladophora surera (Cladophorales, Chlorophyta). J Phycol 34:825–834

    Google Scholar 

  • Campbell EO, Outred HA (1995) Phaeoceros delicates a new species of Anthocerotae from New Zealand. New Zealand J Bot 33:285–290

    Google Scholar 

  • Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356

    PubMed  CAS  Google Scholar 

  • Clayton MN, Shankly CM (1987) The apical meristem of Splachnidium rugosum (Phaeophyta). J Phycol 23:296–307

    Google Scholar 

  • Crawford RM (1973) The protoplasmic ultrastructure of the vegetative cell of Melosira varians C.A. Agradh. J Phycol 9:50–61

    Google Scholar 

  • Crescitelli F, James TW, Erickson JM, Loew ER, McFarland WN (1992) The eyespot of Chlamydomonas reinhardtii: a comparative microspectrophotometric study. Vision Res 32:1593–1600

    PubMed  CAS  Google Scholar 

  • Davies JS, Rands DG, Lachapelle M (1989) Heavily lichenized Physolinum (Chlorophyta) from a dimly lit cave in Missouri. J Phycol 25:419–428

    Google Scholar 

  • Deason TR, Butler GL, Rhyne C (1983) Rhodella reticulate sp. Nov., a new coccoid rhodophytan alga (Porphyridiales). J Phycol 19:104–111

    Google Scholar 

  • Deininger W, Kröger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858

    PubMed  CAS  Google Scholar 

  • Deininger W, Fuhrmann M, Hegemann P (2000) Opsin evolution: out of wild green yonder? Trends Genet 16:158–159

    PubMed  CAS  Google Scholar 

  • Derguini F, Mazur P, Nakanishi K, Starace DM, Saranak J, Foster KW (1991) All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Photochem Photobiol 54:1017–1021

    PubMed  CAS  Google Scholar 

  • Deruére J, Römer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133

    PubMed  Google Scholar 

  • Dieckmann CL (2003) Eyespot placement and assembly in the green alga Chlamydomonas. Bioessays 25:410–416

    PubMed  Google Scholar 

  • Diehn B, Feinleib M, Haupt W, Hildebrand E, Lenci F, Nultsch W (1977) Terminology of behavioural responses of motile microorganisms. Photochem Photobiol 26:559–560

    Google Scholar 

  • Dodge JD (1973) The fine structure of algal cells. Academic Press, London, pp 125–138

    Google Scholar 

  • Dutcher SK, Trebuco EC (1998) The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes δ-Tubulin, a new member of the tubulin superfamily. Mol Biol Cell 9:1293–1308

    PubMed  CAS  Google Scholar 

  • Ebnet E, Fischer M, Deininger W, Hegemann P (1999) Volvoxrhodopsin, a light regulated sensory photoreceptor of the colonial alga Volvox carteri. Plant Cell 11:1–12

    Google Scholar 

  • Ehler LL, Holmes JA, Dutcher SK (1995) Loss of spatial control of the mitotic spindle apparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies. Genetics 141:945–960

    PubMed  CAS  Google Scholar 

  • Ermilova EV, Zalutskaya ZM, Huang KY, Beck CF (2004) Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219:420–427

    PubMed  CAS  Google Scholar 

  • Ernst OP, Sánchez-Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643

    PubMed  CAS  Google Scholar 

  • Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    PubMed  CAS  Google Scholar 

  • Feldman JL, Geimer S, Marshall WF (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5:e149. doi:10.1371/journal.pbio.0050149

    PubMed  Google Scholar 

  • Foster KW (2001) Action spectroscopy of photomovement. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, North Holland, pp 51–115

    Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic alga. Microbiol Rev 44:572–630

    PubMed  CAS  Google Scholar 

  • Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759

    PubMed  CAS  Google Scholar 

  • Foster KW, Saranak J, Zarrilli G (1988) Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 85:6379–6383

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Deininger W, Kateriya S, Hegemann P (2003) Rhodopsin-related proteins, cop1, cop2 and chop1, in Chlamydomonas reinhardtii. In: Batschauer A (ed) Photoreceptors and light signalling. Royal Society of Chemistry, Cambridge, pp 124–135

    Google Scholar 

  • Gaffal KP, el-Gammal S, Friedrichs GJ (1993) Computer-aided 3D-reconstruction of the eyespot-flagellar/basal apparatus-contractile vacuoles-nucleus-associations during mitosis of Chlamydomonas reinhardtii. Endocyt Cell Res 9:177–220

    Google Scholar 

  • Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717

    PubMed  Google Scholar 

  • Gehring WJ (2005) New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered 96:171–184

    PubMed  CAS  Google Scholar 

  • Goldstein SF (1992) Flagellar beat patterns in algae. In: Algal cell motility, Melkonian M (ed), Chapman and Hall, New York, London, pp. 99–153

  • Gosh S, Hudak KA, Dumbroff EB, Thomson JE (1994) Release of photosynthetic protein catabolites by blebbing from thylakoids. Plant Physiol 106:1547–1553

    Google Scholar 

  • Govorunova EG, Sineshchekov OA (2003) Integration of photo- and chemosensory signalling pathways in Chlamydomonas. Planta 216:535–540

    PubMed  CAS  Google Scholar 

  • Govorunova EG, Sineshchekov OA (2005) Chemotaxis in the green flagellate alga Chlamydomonas. Biochemistry (Mosc.) 70:717–725

    CAS  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Hegemann P (1997) Desensitization and dark recovery of the photoreceptor current in Chlamydomonas reinhardtii. Plant Physiol 115:633–642

    PubMed  CAS  Google Scholar 

  • Govorunova EG, Jung KH, Sineshchekov OA, Spudich J (2004) Chlamydomonas sensory Rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86:2342–2349

    PubMed  CAS  Google Scholar 

  • Govorunova EG, Voytsekh OO, Sineshchekov OA (2007) Changes in photoreceptor currents and their sensitivity to the chemoeffector tryptone during gamete mating in Chlamydomonas reinhardtii. Planta 225:441–449

    PubMed  CAS  Google Scholar 

  • Greenwood AD, Leech RM, Williams JP (1963) The osmiophylic globules of chloroplasts. I. Osmiophylic globules as normal component of chloroplasts and their isolation and composition in Vicia faba L. Biochim Biophys Acta 78:148–162

    CAS  Google Scholar 

  • Greuet C (1987) Complex organelles. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 119–142

    Google Scholar 

  • Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150

    PubMed  CAS  Google Scholar 

  • Grossman A, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    PubMed  CAS  Google Scholar 

  • Grung M, Kreimer G, Calenberg M, Melkonian M, Liaaen-Jensen S (1994) Carotenoids in the eyespot apparatus of the flagellate green alga Spermatozopsis similis: adaptation to the retinal-based photoreceptor. Planta 193:38–43

    CAS  Google Scholar 

  • Gutensohn M, Schulz B, Nicolay P, Flügge UI (2000) Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus. Plant J 23:771–783

    PubMed  CAS  Google Scholar 

  • Gutensohn M, Pahnke S, Kolukisaoglu Ü, Schulz B, Schierhorn A, Voigt A, Hust B, Rollwitz I, Stöckel J, Geimer S, Albrecht V, Flügge UI, Klösgen RB (2004) Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplasts. Mol Gen Genomics 272:379–396

    CAS  Google Scholar 

  • Harris E (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    PubMed  CAS  Google Scholar 

  • Hartshorne JN (1953) The function of the eyespot in Chlamydomonas. New Phytol 52:292–297

    Google Scholar 

  • Harz H, Nonnengäßer C, Hegemann P (1992) The photoreceptor current of the green alga Chlamydomonas. Philos Trans R Soc London Ser B 338:39–52

    Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    PubMed  CAS  Google Scholar 

  • Hegemann P, Berthold P (2008) Sensory photoreceptors and light control of flagellar activity. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3, 2nd edn. Elsevier, Amsterdam, pp 395–429

    Google Scholar 

  • Hegemann P, Harz H (1998) How microalgae see the light. In: Caddick MX, Baumberg S, Hodgson DA, Phillip-Jones MK (eds) Society for general microbiology symposium, vol 56. Cambridge University Press, London, pp 95–105

    Google Scholar 

  • Hegemann P, Tsunoda S (2007) Light tools for neuroscience: channelrhodopsin and light activated enzymes. Cell Sci Rev 3:108–123

    Google Scholar 

  • Hegemann P, Gärtner W, Uhl R (1991) All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys J 60:1477–1489

    CAS  PubMed  Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94:273–285

    PubMed  Google Scholar 

  • Hoops HJ (1997) Motility in the colonial and multicellular Volvocales: structure, function, and evolution. Protoplasma 199:99–112

    Google Scholar 

  • Hoops HJ, Witman GB (1985) Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum. J Cell Biol 100:297–309

    PubMed  CAS  Google Scholar 

  • Hori T, Inouye I, Horiguchi T, Boalch GT (1985) Observations on the motile stage of Halosphera minor Ostenfeld (Prasinophyceae) with special reference to the cell structure. Bot Mar 28:529–537

    Google Scholar 

  • Hori T, Moestrup Ø, Hoffman LR (1995) Fine structural studies on an ultraplankltonic species of Pyramimonas, P. virginica (Prasinophyceae), with a discussion of subgenera within the genus Pyraminonas. Eur J Phycol 30:219–234

    Google Scholar 

  • Huang KY, Beck CF (2003) Photoropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 100:6269–6274

    PubMed  CAS  Google Scholar 

  • Huang KY, Kunkel T, Beck CF (2004) Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii. Mol Biol Cell 15:3605–3614

    PubMed  CAS  Google Scholar 

  • Iliev D, Voytsekh O, Mittag M (2006) The circadian system of Chlamydomonas reinhardtii. Biol Rhythms Res 37:323–333

    CAS  Google Scholar 

  • Im CS, Eberhard S, Huang KY, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16

    PubMed  CAS  Google Scholar 

  • Inouye I, Hori T (1991) High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma 164:54–69

    Google Scholar 

  • Inwood W, Yoshihara C, Zalpuri R, Kim K-S, Kustu S (2008) The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga. Mol Plant 1:925–937

    CAS  PubMed  Google Scholar 

  • Iomini C, Li L, Mo W, Dutcher SK, Piperno G (2006) Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas. Curr Biol 16:1147–1153

    PubMed  CAS  Google Scholar 

  • Isogai N, Kamiya R, Yoshimura K (2000) Dominance between the two flagella during phototactic turning in Chlamydomonas. Zool Sci 17:1261–1266

    Google Scholar 

  • Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strains of Chlamydomonas. II. Illuminated cells. Plant Physiol 97:1122–1129

    PubMed  CAS  Google Scholar 

  • Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    PubMed  CAS  Google Scholar 

  • Kamiya R, Witman GB (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol 98:97–107

    PubMed  CAS  Google Scholar 

  • Kawai H, Kreimer G (2000) Sensory mechanisms: light perception and taxis in algae. In: Leadbeater B, Green J (eds) The flagellates: unity, diversity and evolution. Francis and Taylor, pp 124–146

  • Keller LC, Romijn EP, Zamora I, Yates III JR, Marshall WF (2005) Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15:1090–1098

    PubMed  CAS  Google Scholar 

  • Kessler F, Vidi P-A (2007) Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications. Adv Biochem Engin Biotechnol 107:153–172

    CAS  Google Scholar 

  • Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113

    PubMed  CAS  Google Scholar 

  • King SJ, Dutcher SK (1997) Phosphoregulation of an inner dynein arm complex in Chlamydomonas reinhardtii is altered in phototactic mutant strains. J Cell Biol 136:177–191

    PubMed  CAS  Google Scholar 

  • Kondo T, Johnson CH, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the cw 15 strains of Chlamydomonas. I. Cells in darkness. Plant Physiol 95:197–205

    PubMed  Google Scholar 

  • Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacteylatable α-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskelet 25:158–170

    CAS  Google Scholar 

  • Kreimer G (1994) Cell biology of phototaxis in flagellated algae. Int Rev Cytol 148:229–310

    Google Scholar 

  • Kreimer G (1999) Reflective properties of different eyespot types in dinoflagellates. Protist 150:311–323

    PubMed  CAS  Google Scholar 

  • Kreimer G (2001) Light reception and signal modulation during photoorientation of flagellate algae. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, North Holland, pp 193–227

    Google Scholar 

  • Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellate green alga. Eur J Cell Biol 53:101–111

    PubMed  CAS  Google Scholar 

  • Kreimer G, Brohsonn U, Melkonian M (1991a) Isolation and partial characterization of the photoreceptive organelle for phototaxis of a flagellate green alga. Eur J Cell Biol 55:318–327

    PubMed  CAS  Google Scholar 

  • Kreimer G, Kawai H, Müller DG, Melkonian M (1991b) Reflective properties of the stigma in male gametes of Ectocarpus siliculosus (Phaeophyceae) studied by confocal laser scanning microscopy. J Phycol 27:268–276

    Google Scholar 

  • Kreimer G, Marner F-J, Brohsonn U, Melkonian M (1991c) Identification of 11-cis- and all-trans-retinal in the photoreceptive organelle of a flagellate green alga. FEBS-Lett 293:49–52

    PubMed  CAS  Google Scholar 

  • Kreimer G, Overländer C, Sineshchekov OA, Stolzis H, Nultsch W, Melkonian M (1992) Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt-. Planta 188:513–521

    CAS  Google Scholar 

  • Krochko JE, Bewley JD, Pacey J (1978) The effects of rapid and very slow speeds of drying on the ultrastructure and metabolism of the desiccation-sensitive moss Cratoneuron filicinum (Hedw.) Spruce. J Exp Botany 29:905–917

    Google Scholar 

  • Lagali PS, Balyal D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675

    PubMed  CAS  Google Scholar 

  • Lamb MR, Dutcher SK, Worley CK, Dieckmann CL (1999) Eyespot assembly mutants in Chlamydomonas reinhardtii. Genetics 153:721–729

    PubMed  CAS  Google Scholar 

  • Lawson MA, Satir P (1994) Characterization of the eyespot regions of “blind” Chlamydomonas mutants after restoration of photophobic responses. J Euk Microbiol 41:593–601

    PubMed  CAS  Google Scholar 

  • Lawson MA, Zacks DN, Derguini F, Nakanishi K, Spudich JL (1991) Retinal analog restoration of a blind Chlamydomonas mutant: evidence for an archaebacterial chromophore in a eukaryotic rhodopsin. Biophy J 60:1490–1498

    Article  CAS  Google Scholar 

  • Lechtreck K-F, Reize IB, Melkonian M (1997) The cytoskeleton of the naked green flagellate Spermatozopsis similis (Chlorophyta): flagellar and basal body developmental cycle. J Phycol 33:254–265

    Google Scholar 

  • Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour 27:144–148

    CAS  Google Scholar 

  • Linden L, Kreimer G (1995) Calcium modulates rapid protein phosphorylation/dephosphorylation in isolated eyespot apparatuses of the green alga Spermatozopsis similis. Planta 197:343–351

    CAS  Google Scholar 

  • Lohr M, Im C-S, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490–515

    PubMed  CAS  Google Scholar 

  • Maeda T, Imanishi Y, Palczewski K (2003) Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res 22:417–434

    PubMed  CAS  Google Scholar 

  • Matsunaga S, Watanabe S, Sakaushi S, Miyamura S, Hori T (2003) Screening effect diverts the swimming directions from diaphototactic to positive phototactic in a disk-shaped green flagellate Mesostigma viride. Photochem Photobiol 77:324–332

    PubMed  CAS  Google Scholar 

  • Melkonian M (1981) Fate of eyespot lipid globules after zoospore settlement in the green alga Pleuastrum terrestre Fritsch et John. Br Phycol J 16:245–255

    Google Scholar 

  • Melkonian M, Robenek H (1980a) Eyespot membranes in newly released zoospores of the green alga Chlorosarcinopsis gelantinosa (Chlorosarcinales) and their fate during zoospore settlement. Protoplasma 104:129–140

    Google Scholar 

  • Melkonian M, Robenek H (1980b) Eyespot membranes of Chlamydomonas reinhardii––a freeze-fracture study. J Ultrastruct Res 72:90–102

    PubMed  CAS  Google Scholar 

  • Melkonian M, Robenek H (1984) The eyespot apparatus of flagellated green alga: a critical review. Prog Phycol Res 3:193–268

    Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The evolution of key animal and plant functions is revealed by analysis of the Chlamydomonas genome. Science 318:245–251

    PubMed  CAS  Google Scholar 

  • Mergenhagen D (1984) Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardtii. Eur J Cell Biol 33:13–18

    PubMed  CAS  Google Scholar 

  • Misumi O, Yoshida Y, Nishida K, Fujiwara T, Sakajiri T, Hirooka S, Nishimura Y, Kuroiwa T (2008) Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merole, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. J Plant Res 121:3–17

    PubMed  CAS  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    PubMed  CAS  Google Scholar 

  • Mittelmeier T, Berthold P, Danon A, Lamb MR, Levitan A, Rice ME, Dieckmann CL (2008) The C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas. Eukaryot Cell 7:2100–2112

    PubMed  CAS  Google Scholar 

  • Miyaji K (1996) Taxonomic study of the genus Spongomorpha (Acrosiphonales, Chlorophyta) in Japan. I. Spongomorpha spiralis. Phycol Res 44:27–36

    Google Scholar 

  • Miyamura S, Hori T, Nagumo T (2003) Eyespot behaviour during the fertilization of gametes in Ulva arasakii Chihara (Ulvophyceae, Chlorophyta). Phycol Res 51:143–146

    Google Scholar 

  • Moestrup Ø, Ettl H (1979) A light and electron microscopical study of Nephroselmis olivacea (Prasinophyceae). Opera Bot 49:1–39

    Google Scholar 

  • Moestrup Ø, Hoffman LR (1973) Ultrastructure of the green alga Dichotomosiphon tuberosus with special reference to the occurrence of striated tubules in the chloroplast. J Phycol 9:430–437

    Google Scholar 

  • Morel-Laurens N (1987) Calcium control of phototactic orientation in Chlamydomonas reinhardtii: sign and strength of response. Photochem Photobiol 45:119–128

    PubMed  CAS  Google Scholar 

  • Morel-Laurens N, Feinleib ME (1983) Photomovement in an “eyeless” mutant of Chlamydomonas. Photochem Photobiol 37:189–194

    Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    PubMed  CAS  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    PubMed  CAS  Google Scholar 

  • Nakamura S, Ogihara H, Jinbo K, Tateishi M, Takahashi T, Yoshimura K, Kubota M, Watanabe M, Nakamura S (2001) Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) mutant with multiple eyespots. Phycol Res 49:115–121

    Google Scholar 

  • Nakayama T, Inouye I (2000) Ultrastructure of the biflagellate gametes of Collinsiella cava (Ulvophyceae, Chlorophyta). Phycol Res 48:63–73

    Google Scholar 

  • Nelson JAE, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15:5762–5769

    PubMed  CAS  Google Scholar 

  • Ohad I, Goldberg I, Broza R, Schuldiner S, Gan-Zvi E (1969) Changes in lipid and pigment composition and photosynthetic activity during formation of chloroplast lamellae in a mutant of Chlamydomonas reinhardtii y-1. In: Metzner H (ed) Progress in photosynthesis research, vol 1. International Union of Biological Sciences, Tübingen, pp 284–295

    Google Scholar 

  • Okamoto OK, Hastings JW (2003) Novel dinoflagellate clock-related genes identified through microarray analysis. J Phycol 39:519–526

    CAS  Google Scholar 

  • Okamoto N, Inouye I (2005) A secondary symbiosis in progress? Science 310:287

    PubMed  CAS  Google Scholar 

  • Okamoto N, Inouye I (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157:401–419

    PubMed  Google Scholar 

  • Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K (2005) Phototactic activity in Chlamydomonas ‘nonphototactic’ mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. J Cell Sci 118:529–537

    PubMed  CAS  Google Scholar 

  • Ozawa S, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix J-D, Takahashi Y (2008) Biochemical and structural studies of the large Ycf4-Photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. submitted

  • Palczewski K, Saari JC (1997) Activation and inactivation steps in the visual transduction pathway. Curr Opin Neurobiol 7:500–504

    PubMed  CAS  Google Scholar 

  • Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417:329–335

    PubMed  CAS  Google Scholar 

  • Patrone LM, Broadwater ST, Scott JL (1991) Ultrastructure of vegetative and dividing cells of the unicellular red alga Rhodella violacea and Rhodella maculate. J Phycol 27:742–753

    Google Scholar 

  • Pazour GJ, Sineshchekov OA, Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131:427–440

    PubMed  CAS  Google Scholar 

  • Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113

    PubMed  CAS  Google Scholar 

  • Pozueta-Romero J, Rafia F, Houlné G, Cheniclet C, Carde J-P, Schantz M-L, Schantz R (1997) A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol. 115:1185–1194

    PubMed  CAS  Google Scholar 

  • Pueschel CM, Cole KM (1985) Ultrastructure of germinating carpospores of Porphyra variegate (Kjellm.) Hus (Bangiales; Rhodophyta). J Phycol 21:146–154

    Google Scholar 

  • Pueschel CM, Miller TJ (1996) Reconsidering prey specializations in an algal-limpet grazing mutualism: ephithallial cell development in Clathromorphum circumscriptum (Rhodophyta, Corallinales). J Phycol 32:28–36

    Google Scholar 

  • Renninger S (2004) Augenfleckglobuli aus Spermatozopsis similis (Chlorophyceae): Isolierung und vergleichende Charakterisierung zu Plastoglobuli Höherer Pflanzen. PhD Thesis, Universität Erlangen-Nürnberg, Germany

  • Renninger S, Backendorf E, Kreimer G (2001) Subfractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules. Planta 213:51–63

    PubMed  CAS  Google Scholar 

  • Renninger S, Dieckmann CL, Kreimer G (2006) Towards a protein map of the green algal eyespot: analysis of eyespot globule-associated proteins. Phycologia 45:199–212

    Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    PubMed  CAS  Google Scholar 

  • Rey P, Gillet B, Römer S, Eymery F, Massimino J, Peltier G, Kuntz M (2000) Over-expression of a pepper plastid-lipid-associated protein in tobacco leads to changes in plastid-ultrastructure and plant development upon stress. Plant Journal 21:483–494

    PubMed  CAS  Google Scholar 

  • Richardson FL, Brown TE (1970) Glaucospharea vacuolata, its ultrastructure and physiology. J Phycol 6:165–171

    Google Scholar 

  • Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light induced structural changes of Channelrhodopsin-2 by UV/Vis and FTIR spectroscopy. J Biol Chem, under revision

  • Roberts DGW, Lamb MR, Dieckmann CL (2001) Characterization of the eye2 gene required for eyespot assembly in Chlamydomonas reinhardtii. Genetics 158:1037–1049

    PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Philippe H, Brinkmann H, Becker B, Melkonian M (2007) Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. Mol Biol Evol 24:723–731

    PubMed  CAS  Google Scholar 

  • Ruch S, Beyer P, Ernst HG, Al-Babili S (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024

    PubMed  CAS  Google Scholar 

  • Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil Cytoskeleton 5:251–263

    Google Scholar 

  • Rüffer U, Nultsch W (1991) Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern. Cell Motil Cytoskeleton 18:269–278

    Google Scholar 

  • Ruiz-González MX, Marin I (2004) New insights into the evolutionary history of type 1 rhodopsins. J Mol Evol 58:348–358

    PubMed  Google Scholar 

  • Sakaguchi H, Iwasa K (1979) Two photophobic responses in Volvox carteri. Plant Cell Physiol 20:909–916

    Google Scholar 

  • Santos LMA, Melkonian M, Kreimer G (1996) A combined reflection confocal laser scanning, electron and fluorescence microscopy analysis of the eyespot in zoospores of Vischeria spp. (Eustigmatales, Eustigmatophyceae). Phycologia 35:299–307

    Google Scholar 

  • Satoh M, Hori T, Tsujimoto K, Sasa T (1995) Isolation of eyespots of green algae and analyses of pigments. Bot Marina 38:467–474

    Article  CAS  Google Scholar 

  • Sattler SE, Cahoon EB, Cougghlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclises from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195

    PubMed  CAS  Google Scholar 

  • Schaller K, Uhl R (1997) A microspectrophotometric study of the shielding properties of eyespot and cell body in Chlamydomonas. Biophys J 73:1573–1578

    PubMed  CAS  Google Scholar 

  • Schlicher U, Linden L, Calenberg M, Kreimer G (1995) G proteins and Ca2+-modulated protein kinases of a plasma membrane-enriched fraction and isolated eyespot apparatuses of Spermatozopsis similis (Chlorophyceae). Eur J Phycol 30:319–330

    Google Scholar 

  • Schmid AM (2003) Endobacteria in the diatom Pinnularia (Bacilariophyceae). I. “Scattered ct-nucleoids” explained: DAPI-DNA complexes stem from exoplastidial bacteria boring into the chloroplast. J Phycol 39:122–138

    Google Scholar 

  • Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reißenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–1930

    PubMed  CAS  Google Scholar 

  • Schmidt M, Luff M, Mollwo A, Kaminski M, Mittag M, Kreimer G (2007) Evidence for a specialized localization of the chloroplast ATP-synthase subunits α, β and γ in the eyespot apparatus of Chlamydomonas reinhardtii (Chlorophyceae). J Phycology 43:284–294

    CAS  Google Scholar 

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84

    PubMed  CAS  Google Scholar 

  • Scott JL, Broadwater ST, Saunders BD, Thomas JP (1992) Ultrastructure of vegetative organization and cell division in the unicellular red alga Dixoniella grisea gen. nov. (Rhodophyta) and a consideration of the genus Rhodella. J Phycol 28:649–660

    Google Scholar 

  • Simkin AJ, Gaffé J, Alcaraz J-P, Carde J-P, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545–1556

    PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Govorunova EA (2001) Electrical events in photomovement of green flagellated algae. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, Amsterdam, pp 245–280

    Google Scholar 

  • Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:8689–8694

    PubMed  CAS  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Jung K-H, Zauner S, Maier U-G, Spudich JL (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319

    PubMed  CAS  Google Scholar 

  • Sitte P (1963) Hexagonale Anordnung der Globuli in Moos-Chloroplasten. Protoplasma 56:197–201

    Google Scholar 

  • Suda S (2003) Light microscopy and electron microscopy of Nephroselmis spinosa sp nov (Prasinophyceae, Chlorophyta). J Phycol 39:590–599

    Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    PubMed  CAS  Google Scholar 

  • Sym SD, Pienaar RN (1993) The class Prasinophyceae. Prog Phycol Res 9:281–376

    Google Scholar 

  • Takahashi T, Watanabe M (1993) Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. FEBS Lett 336:516–520

    PubMed  CAS  Google Scholar 

  • Thomson W, Platt K (1973) Plastid ultrastructure in the barrel cactus, Echinocactus acanthodes. New Phytol 72:791–797

    Google Scholar 

  • Uniacke J, Zerges W (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell 19:3640–3654

    PubMed  CAS  Google Scholar 

  • Valentine LJ, Campbell EO, Hopcroft DH (1986) A study of chloroplast structure in 3 Megaceros species and 3 Dendroceros species (Anthocerotae) indigenous to New Zealand. New Zealand J Bot 24:1–8

    Google Scholar 

  • van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270

    PubMed  CAS  Google Scholar 

  • Vidi P-A, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast Plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    PubMed  CAS  Google Scholar 

  • Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M, Kreimer G (2008a) The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol 146:772–788

    PubMed  CAS  Google Scholar 

  • Wagner V, Kreimer G, Mittag M (2008b) The power of functional proteomics: components of the green algal eyespot and its light signaling pathway(s). Plant Sign Behav 3:1–3

    Google Scholar 

  • Walne PL (1966) The effects of cochicine on cellular organization in Chlamydomonas. I. Light microscopy and cytochemistry. Amer J Bot 53:908–916

    CAS  Google Scholar 

  • Walne PL, Arnott HJ (1967) The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugametos. Planta 77:325–353

    Google Scholar 

  • Wheeler GL, Joint I, Brownlee C (2008) Rapid spatiotemporal pattering of cytosolic Ca2+ underlies flagellar excision in Chlamydomonas reinhardtii. Plant J 53:401–413

    PubMed  CAS  Google Scholar 

  • Witman GB (1993) Chlamydomonas phototaxis. Trends Cell Biol 3:403–408

    PubMed  CAS  Google Scholar 

  • Yang P, Sale WS (2000) Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. J Biol Chem 275:18905–18912

    PubMed  CAS  Google Scholar 

  • Yoshimura K (1994) Chromophore orientation in the photoreceptor of Chlamydomonas as probed by stimulation with polarised light. Photochem Photobiol 60:594–597

    CAS  Google Scholar 

  • Yoshimura K, Kamiya R (2001) The sensitivity of Chlamydomonas photoreceptor is optimized for the frequency of cell body rotation. Plant Cell Physiol 42:665–672

    PubMed  CAS  Google Scholar 

  • Ytterberg AJ, Peltier J-B, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts: a surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    PubMed  CAS  Google Scholar 

  • Zacks DN, Derguini F, Nakanishi K, Spudich JL (1993) Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii. Biophys J 65:508–518

    PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448

    PubMed  CAS  Google Scholar 

  • Zorin B, Hegemann P, Sizova I (2005) Nuclear gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4:1264–1272

    PubMed  CAS  Google Scholar 

  • Zuo B-Y, Zhang O, Jiang G-Z, Chen C-J (2004) The response of ultrastructure and function of chloroplasts from Cycas to doubled CO2 concentration. Bot Rev 70:72–78

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges continuous financial support by the Deutsche Forschungsgemeinschaft. Special thanks is given to all current and former members of my lab and my co-workers during the last two decades of work in this fascinating field of algal cell biology. Sharing of prepublished material by several colleagues is also gratefully acknowledged. A special thank for continuous good collaboration in all aspects of electron microscopy is given to S. Geimer. Thanks also to M. Gutensohn for the Toc34-antisense plants, to B. Marin for the different moss cultures, and to S. Renninger and A. Mollwo for their engagement within the plastoglobuli project. Finally, I would like to thank P. Hegemann, M. Lohr and M. Mittag for critical comments on the manuscript and T. Reißenweber for preparation of Fig. 2a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Kreimer.

Additional information

Communicated by R. Bock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Whole-mount electron microscopy of isolated plastoglobules from Pisum sativum. The sample was taken directly from the final sucrose gradient, fixed and negatively stained on the grid. Note the tendency of the plastoglobules to form aggregates without fusing and the variation in globule size (minimum: 15 nm, maximum: 148 nm; n = 216 globules). Scale bars: 100 nm. (PDF 107 kb)

Supplemental video This video demonstrates eyespot reflectivity at a reduced frame rate (15 frames per second). Cells of C. reinhardtii close to and partially sticking to the surface of a petridish were analyzed with epireflection microscopy. Note the dependence of the reflection signal from the relative orientation of the eyespot towards the light source. A bright reflection signal only appears when the eyespot is oriented towards the light source. (MOV 6096 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreimer, G. The green algal eyespot apparatus: a primordial visual system and more?. Curr Genet 55, 19–43 (2009). https://doi.org/10.1007/s00294-008-0224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0224-8

Keywords

Navigation