Skip to main content
Log in

Global formulation for interactive multiobjective optimization

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

Interactive methods are useful and realistic multiobjective optimization techniques and, thus, many such methods exist. However, they have two important drawbacks when using them in real applications. Firstly, the question of which method should be chosen is not trivial. Secondly, there are rather few practical implementations of the methods. We introduce a general formulation that can accommodate several interactive methods. This provides a comfortable implementation framework for a general interactive system. Besides, this implementation allows the decision maker to choose how to give preference information to the system, and enables changing it anytime during the solution process. This change-of-method option provides a very flexible framework for the decision maker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benayoun R, de Montgolfier J, Tergny J, Laritchev O (1971) Programming with multiple objective functions: step method (STEM). Math Program 1(3): 366–375

    Article  Google Scholar 

  • Buchanan JT (1997) A naïve approach for solving MCDM problems: the GUESS method. J Oper Res Soc 48(2): 202–206

    Google Scholar 

  • Caballero R, Luque M, Molina J, Ruiz F (2002) PROMOIN: an interactive system for multiobjective programming. Int J Inform Technol Decis Making 1: 635–656

    Article  Google Scholar 

  • Chankong V, Haimes YY (1983) Multiobjective decision making: theory and methodology. North-Holland, New York

    Google Scholar 

  • Eschenauer HA, Osyczka A, Schäfer E (1990) Interactive multicriteria optimization in design process. In: Eschenauer H, Koski J, Osyczka A (eds) Multicriteria design optimization procedures and applications. Springer, Berlin, pp 71–114

    Google Scholar 

  • Gardiner L, Steuer RE (1994a) Unified interactive multiple objective programming. Eur J Oper Res 74(3): 391–406

    Article  Google Scholar 

  • Gardiner L, Steuer RE (1994b) Unified interactive multiple objective programming: an open architecture for accommodating new procedures. J Oper Res Soc 45(12): 1456–1466

    Google Scholar 

  • Hwang CL, Masud ASM (1979) Multiple objective decision making—methods and applications: a state-of-the-art survey. Springer, Berlin

    Google Scholar 

  • Jaszkiewicz A, Slowiński R (1999) The ‘light beam search’ approach—an overview of methodology and applications. Eur J Oper Res 113: 300–314

    Article  Google Scholar 

  • Kaliszewski I (2004) Out of the mist—towards decision-maker-friendly multiple criteria decision making support. Eur J Oper Res 158: 293–307

    Article  Google Scholar 

  • Klamroth K, Miettinen K (2008) Integrating approximation and interactive decision making in multicriteria optimization. Oper Res 56(1): 222–234

    Article  Google Scholar 

  • Luque M, Caballero R, Molina J, Ruiz F (2007) Equivalent information for multiobjective interactive procedures. Manage Sci 53(1): 125–134

    Article  Google Scholar 

  • Luque M, Yang JB, Wong BYH (2008) PROJECT method for multiobjective optimisation based on gradient projection and reference point. IEEE Trans Syst Man Cybern—Part A (to appear)

  • Luque M, Miettinen K, Eskelinen P, Ruiz F (2009) Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega 37(2): 450–462

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston

    Google Scholar 

  • Miettinen K (2006) IND-NIMBUS for demanding interactive multiobjective optimization. In: Trzaskalik T (eds) Multiple Criteria Decision Making ’05. The Karol Adamiecki University of Economics in Katowice, Katowice, pp 137–150

    Google Scholar 

  • Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34(3): 231–246

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM (1997) Interactive method NIMBUS for nondifferentiable multiobjective optimization problems. In: Climaco J (eds) Multicriteria analysis. Springer, Berlin, pp 310–319

    Google Scholar 

  • Miettinen K, Mäkelä MM (1999) Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation. J Oper Res Soc 50(9): 949–959

    Google Scholar 

  • Miettinen K, Mäkelä MM (2000) Interactive multiobjective optimization system WWW-NIMBUS on the Internet. Comput Oper Res 27(7–8): 709–723

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectr 24(2): 193–213

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170(3): 909–922

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM, Kaario K (2006) Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur J Oper Res 175(2): 931–947

    Article  Google Scholar 

  • Nakayama H, Sawaragi Y (1984) Satisficing trade-off method for multiobjective programming. In: Grauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Berlin, pp 113–122

    Google Scholar 

  • Narula SC, Weistroffer HR (1989) A flexible method for nonlinear multicriteria decisionmaking problems. IEEE Trans Syst Man Cybern 19(4): 883–887

    Article  Google Scholar 

  • Romero C (2001) Extended lexicographic goal programming: a unified approach. Omega 29: 63–71

    Article  Google Scholar 

  • Sakawa M (1982) Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. Eur J Oper Res 9(4): 386–396

    Article  Google Scholar 

  • Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, Orlando

    Google Scholar 

  • Steuer RE (1986) Multiple criteria optimization: theory, computation and application

  • Steuer RE, Choo EU (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26: 326–344

    Article  Google Scholar 

  • Vassileva M, Miettinen K, Vassilev V (2005) Generalized scalarizing problem for multicriteria optimization. IIT Working Papers IIT/WP-205, Institute of Information Technologies, Bulgaria

  • Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making, theory and applications. Springer, Berlin, pp 468–486

    Google Scholar 

  • Wierzbicki AP (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr 8(2): 73–87

    Google Scholar 

  • Yang JB (1999) Gradient projection and local region search for multiobjective optimization. Eur J Oper Res 112: 432–459

    Article  Google Scholar 

  • Yang JB, Li D (2002) Normal vector identification and interactive tradeoff analysis using minimax formulation in multiobjective optimisation. IEEE Trans Syst Man Cybern A Syst Humans 32(3): 305–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Luque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, M., Ruiz, F. & Miettinen, K. Global formulation for interactive multiobjective optimization. OR Spectrum 33, 27–48 (2011). https://doi.org/10.1007/s00291-008-0154-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-008-0154-3

Keywords

Navigation