Skip to main content

Advertisement

Log in

Developments in reactive diluents: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nowadays, industries are focussing on reducing the concentration of the volatile organic component in the coatings, also easing the toxicity that comes hand in hand with the usage of petroleum-based solvents to lessen the environmental impact. Numerous ways are presumed to tackle this problem; however, in recent years, tremendous research is carried in the field of reactive diluents. The review paper explores the role of petroleum and biobased reactive diluents in various resin chemistries like epoxy, unsaturated polyester, vinyl ester, alkyd, and polyurethane. The features accorded by the conventional reactive diluents are compared with the novel biobased reactive diluents. Furthermore, this work discusses the development of coatings for flame retardancy, antistatic properties, and coil-coating application. It also reviews the structure and characteristic behaviour offered by reactive diluents on the film obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Meijer M (2001) Review on the durability of exterior wood coatings with reduced VOC-content. Prog Org Coat 43:217–225. https://doi.org/10.1016/S0300-9440(01)00170-9

    Article  Google Scholar 

  2. Kimerling AS, Bhatia SR (2004) Block copolymers as low-VOC coatings for wood: characterization and tannin bleed resistance. Prog Org Coat 51:15–26. https://doi.org/10.1016/j.porgcoat.2004.03.006

    Article  CAS  Google Scholar 

  3. Meijer M, Creemers J, Cobben W (2001) Relationships between the performance of low-VOC wood coatings and the dimensional changes of the wooden substrate. Surf Coat Int B Coat Trans 84:77–85. https://doi.org/10.1007/BF02699700

    Article  Google Scholar 

  4. Sharmin E, Zafar F, Akram D et al (2015) Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crop Prod 76:215–229. https://doi.org/10.1016/j.indcrop.2015.06.022

    Article  CAS  Google Scholar 

  5. Enomoto S, Nishida HTS, Wada H et al (1978) Study of reactive diluent for air-dried alkyd paint. J Appl Polym Sci 22:253–265. https://doi.org/10.1002/app.1978.070220118

    Article  CAS  Google Scholar 

  6. Stenberg C, Svennson M, Wallstrӧm E et al (2005) Drying of linseed oil wood coatings using reactive diluents. Surf Coat Int B Coat Trans 88:119–126. https://doi.org/10.1007/BF02699543

    Article  CAS  Google Scholar 

  7. Czub P (2006) Application of modified natural oils as reactive diluents for epoxy resins. Macromol Symp Spec Issue 242:60–64. https://doi.org/10.1002/masy.200651010

    Article  CAS  Google Scholar 

  8. Li Y, LiChen BW (2014) A study on the reactive diluent for the solvent-free epoxy anticorrosive coating. J Chem Pharm Res 6:2466–2469

    CAS  Google Scholar 

  9. Li Y, Zhang Y, Wang L et al (2017) Synthesis and characterization of methacrylated eugenol as a sustainable reactive diluent for a maleinated acrylated epoxidized soybean oil resin. ACS Sustain Chem Eng 5:8876–8883. https://doi.org/10.1021/acssuschemeng.7b01673

    Article  CAS  Google Scholar 

  10. Njuku FW, MwangiThiong’o PMGT (2014) Evaluation of cardanol acetate as a reactive diluent for alkyd coatings. Int J Adv Res 2:928–941

    Google Scholar 

  11. Zabel K, Klaasen R, Muizebelt W et al (1999) Design and incorporation of reactive diluents for air-drying high solids alkyd paints. Prog Org Coat 35:255–264. https://doi.org/10.1016/S0300-9440(99)00027-2

    Article  CAS  Google Scholar 

  12. Karami Z, Nademi F, Zohuriaan-Mehr MJ et al (2017) An efficient fully bio-based reactive diluent for epoxy thermosets: 2-[(oxiran-2-ylmethoxy) methyl] furan versus a petroleum-based counterpart. J Appl Polym Sci 134:44957. https://doi.org/10.1002/app.44957

    Article  CAS  Google Scholar 

  13. Phalak G, Patil D, Vignesh V et al (2018) Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application. Ind Crops Prod 119:9–21. https://doi.org/10.1016/j.indcrop.2018.04.001

    Article  CAS  Google Scholar 

  14. Yurugi K, Fukada A, Matsukawa K (2004) Reactive Diluent and curable resin composition. US Patent 6,767,980

  15. Ang DT-C (2015) Effect of reactive diluent on physicochemical and thermal properties of UV-curable alkyd coatings. J Coat Technol Res. https://doi.org/10.1007/s11998-015-9675-2

    Article  Google Scholar 

  16. Chen J, Nie X, Liu Z et al (2015) Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin. ACS Sustain Chem Eng 3:1164–1171. https://doi.org/10.1021/acssuschemeng.5b00095

    Article  CAS  Google Scholar 

  17. Nalawade PP, Mehta B, Pugh C et al (2014) Modified soybean oil as a reactive diluent: synthesis and characterization. J Polm Sci Pol Chem 52:3045–3059. https://doi.org/10.1002/pola.27352

    Article  CAS  Google Scholar 

  18. Malshe VC, Sikchi M (2002) Basics of paint technology (Part 1). Sevak Printers, Mumbai

  19. Poynton G (2014) Multi‐component epoxy resin formulation for high temperature applications. Dissertation, University of Manchester

  20. Huo S, Ma H, Liu G et al (2018) Synthesis and properties of organosilicon-grafted cardanol novolac epoxy resin as a novel biobased reactive diluent and toughening agent. ACS Omega 3:16403–16408. https://doi.org/10.1021/acsomega.8b02401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahoo SK, Mohanty S, Nayak SK (2015) Synthesis and characterization of bio-based epoxy blends from renewable resource based epoxidized soybean oil as reactive diluent. Chin J Polym Sci 33:137–152. https://doi.org/10.1007/s10118-015-1568-4

    Article  CAS  Google Scholar 

  22. Licari JJ, Swanson DW (2011) Chemistry, formulation, and properties of adhesives. In: adhesives technology for electronic applications. William Andrew, New York, pp 75–141. https://doi.org/10.1016/B978-1-4377-7889-2.10003-8

  23. Bajpai M, Shukla V, Kumar A (2002) Film performance and UV curing of epoxy acrylate resins. Prog Org Coat 44:271–278. https://doi.org/10.1016/S0300-9440(02)00059-0

    Article  CAS  Google Scholar 

  24. Kardar P, Ebrahimi M, Bastani S et al (2009) Using mixture experimental design to study the effect of multifunctional acrylate monomers on UV cured epoxy acrylate resins. Prog Org Coat 64:74–80. https://doi.org/10.1016/j.porgcoat.2008.07.022

    Article  CAS  Google Scholar 

  25. Khalina M, Beheshty MH, Salimi A (2019) The effect of reactive diluent on mechanical properties and microstructure of epoxy resins. Poly Bull 76:3905–3927. https://doi.org/10.1007/s00289-018-2577-6

    Article  CAS  Google Scholar 

  26. Wua S, Searsa MT, Soucek MD et al (1999) Synthesis of reactive diluents for cationic cycloaliphatic epoxide UV coatings. Polymer 40:5675–5686. https://doi.org/10.1016/S0032-3861(98)00785-X

    Article  Google Scholar 

  27. Nobile MR, Raimondo M, Lafdi K et al (2015) Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polym Compos 36:1152–1160. https://doi.org/10.1002/pc.23362

    Article  CAS  Google Scholar 

  28. Zhang G, Xie Q, Ma C et al (2018) Permeable epoxy coating with reactive solvent for anticorrosion of concrete. Prog Org Coat 117:29–34. https://doi.org/10.1016/j.porgcoat.2017.12.018

    Article  CAS  Google Scholar 

  29. Kilambi H, Cramer NB, Schneidewind LH et al (2009) Evaluation of highly reactive mono-methacrylates as reactive diluents for BisGMA-based dental composites. Dent Mater 25:33–38. https://doi.org/10.1016/j.dental.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  30. Petrova TV, Solodilov VI, Kabantseva VE et al (2019) Furfurylglycidyl ether: a new effective active diluent for epoxy resins from bio-renewable raw materials. Adv Comp Sci Technol 683:012070. https://doi.org/10.1088/1757-899X/683/1/012070

    Article  CAS  Google Scholar 

  31. Maiorana A, Yue L, Manas-Zloczower I, Gross R (2016) Structure–property relationships of a bio-based reactive diluent in a bio-based epoxy resin. J Appl Polym Sci 133:4365–4373. https://doi.org/10.1002/app.43635

    Article  CAS  Google Scholar 

  32. Kardar P, Ebrahimi M, Bastani S (2014) Curing behaviour and mechanical properties of pigmented UV-curable epoxy acrylate coatings. Pigm Resin Technol 43:177–184. https://doi.org/10.1108/PRT-07-2013-0054

    Article  CAS  Google Scholar 

  33. Sinha A, Khan NI, Das S et al (2017) Effect of reactive and non-reactive diluents on thermal and mechanical properties of epoxy resin. High Perform Polym 30:1–10. https://doi.org/10.1177/0954008317743307

    Article  CAS  Google Scholar 

  34. Guadagno L, Raimondo M, Vittoria V et al (2014) Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv 4:15474–15488. https://doi.org/10.1039/C3RA48031C

    Article  CAS  Google Scholar 

  35. Jaillet F, Darroman E, Ratsimihety A et al (2014) New biobased epoxy materials from cardanol. Eur J Lipid Sci Technol 116:63–73. https://doi.org/10.1002/ejlt.201300193

    Article  CAS  Google Scholar 

  36. Rad NG, Karami Z, Zohuriaan-Mehr MJ et al (2019) Linseed oil-based reactive diluents preparation to improve tetra-functional epoxy resin properties. Polym Adv Technol 30:2361–2369. https://doi.org/10.1002/pat.4680

    Article  CAS  Google Scholar 

  37. Sahoo S, Khandelwal V, Manik G (2017) Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym Adv Technol 29:565–574. https://doi.org/10.1002/pat.4166

    Article  CAS  Google Scholar 

  38. Das G, Karak N (2009) Epoxidized Mesua ferrea L. seed oil-based reactive diluent for BPA epoxy resin and their green nanocomposites. Prog Org Coat 66:59–64. https://doi.org/10.1016/j.porgcoat.2009.06.001

    Article  CAS  Google Scholar 

  39. Derksen JTX, Cuperus EP, Kolster P (1995) Paints and coatings from renewable resources. Ind Crops Prod 3:225–236. https://doi.org/10.1016/0926-6690(94)00039-2

    Article  Google Scholar 

  40. Samuelsson J, Sundell PE, Johansson M (2004) Synthesis and polymerization of a radiation curable hyperbranched resin based on epoxy functional fatty acids. Prog Org Coat 50:193–198. https://doi.org/10.1016/j.porgcoat.2004.02.005

    Article  CAS  Google Scholar 

  41. Malik M, Choudhary V, Varma IK (2000) Current status of unsaturated polyester resins. J Macromol Sci Polym Rev 40:139–165. https://doi.org/10.1081/MC-100100582

    Article  Google Scholar 

  42. Cousinet S, Ghadban A, Allaoua I et al (2014) Biobased vinyl levulinate as styrene replacement for unsaturated polyester resins. J Polym Sci Pol Chem 52:3356–3364. https://doi.org/10.1002/pola.27397

    Article  CAS  Google Scholar 

  43. Dai J, Ma S, Liub X et al (2015) Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Prog Org Coat 78:49–54. https://doi.org/10.1016/j.porgcoat.2014.10.007

    Article  CAS  Google Scholar 

  44. Nebioglu A, Soucek MD (2006) Reaction kinetics and microgel particle size characterization of ultraviolet-curing unsaturated polyester acrylates. J Polym Sci A Polym Chem 44:6544–6557. https://doi.org/10.1002/pola.21744

    Article  CAS  Google Scholar 

  45. Nebioglu A, Soucek MD (2007) Investigation of the properties of UV-curing acrylate-terminated unsaturated polyester coatings by utilizing an experimental design methodology. J Coat Technol Res 4:425–433. https://doi.org/10.1007/s11998-007-9035-y

    Article  CAS  Google Scholar 

  46. Avella M, Martuscelli E, Mazzola M (1985) Kinetic study of the cure reaction of unsaturated polyester resins. J Therm Anal 30:1359–1366. https://doi.org/10.1007/BF01914307

    Article  CAS  Google Scholar 

  47. Shi W, Ranby B (1996) Photopolymerization of Dendritic Methacrylated Polyesters: 111 FRP composites. J Appl Polym Sci 59:1951–1956. https://doi.org/10.1002/(SICI)1097-4628(19960321)59:12%3c1951::AID-APP18%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  48. Keinänen K, Wigington G (2001) Unsaturated Polyester resins. US Patent 6,268,464

  49. Cousinet S, Ghadban A, Fleury E et al (2015) Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins. Eur Polym J 67:539–550. https://doi.org/10.1016/j.eurpolymj.2015.02.016

    Article  CAS  Google Scholar 

  50. Artur C, Barbara G (2019) Methacrylate monomer as an alternative to styrene in typical polyester–styrene copolymers. J Appl Polym Sci 136:47735. https://doi.org/10.1002/app.47735

    Article  CAS  Google Scholar 

  51. Liu W, Xie T, Qiu R (2015) Styrene-free unsaturated polyesters for hemp fibre composite. Compos Sci Technol 120:60–72. https://doi.org/10.1016/j.compscitech.2015.10.017

    Article  CAS  Google Scholar 

  52. Froehling PE (1982) Crosslinking of unsaturated polyester resins by combination of vinyl esters and methacrylates. J Appl Polym Sci 27:3577–3584. https://doi.org/10.1002/app.1982.070270931

    Article  CAS  Google Scholar 

  53. Lima MS, Costa CSMF, Coelho JFJ et al (2018) A simple strategy toward the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins. Green Chem 20:4880–4890. https://doi.org/10.1039/C8GC01214H

    Article  CAS  Google Scholar 

  54. Dholkiya B (2012) Unsaturated polyester resin for speciality applications. In: Saleh H (ed) Polyester. Intech Open Publisher, London, pp 167–202

    Google Scholar 

  55. Kim HG, Oh DH, Lee HB et al (2004) Effect of reactive diluents on properties of unsaturated polyester/montmorillonite nanocomposites. J Appl Polym Sci 92:238–242. https://doi.org/10.1002/app.13657

    Article  CAS  Google Scholar 

  56. Gibbs BF, Mulligan CN (1997) Styrene Toxicity: an ecotoxicological assessment. Ecotox Environ Safe 38:181–194. https://doi.org/10.1006/eesa.1997.1526

    Article  CAS  Google Scholar 

  57. Scheibelhoffer AS, Drabeck GW, Thompson RE et al (1999) Low VOC unsaturated polyester systems and uses thereof. US Patent 5,874,503

  58. Apanovich N, Maksimova E, Zelenskaya A et al (2019) Investigation of the effect of reactive diluent on the properties of coatings based on unsaturated polyesters. Egypt J Chem 62: 45–46. https://doi.org/10.2160/ejchem.2019.18289.2124

  59. Mathai J (1992) Hydroxy-functional polyester diluents as additives in coating compositions. US Patent 5,104,955

  60. Wu Y, Li K (2016) Replacement of styrene with acrylated epoxidized soybean oil in an unsaturated polyester resin from propylene glycol, isophthalic acid, and maleic anhydride. J Appl Polym Sci 133:43052–43058. https://doi.org/10.1002/app.43052

    Article  CAS  Google Scholar 

  61. Fonseca AC, Costa CSMF, Marques TMP et al (2017) The impact of a designed lactic acid-based crosslinker in the thermochemical properties of unsaturated polyester resins/nanoprecipitated calcium carbonate composites. J Mater Sci 52:1272–1284. https://doi.org/10.1007/s10853-016-0422-6

    Article  CAS  Google Scholar 

  62. Agrawal S, Mishra A, Rai JSP (2003) Effect of diluents on the curing behavior of vinyl ester resin. J Appl Polym Sci 87:1948–1951. https://doi.org/10.1002/app.11543

    Article  CAS  Google Scholar 

  63. Gaur B, Rai JSP (1992) Curing and decomposition behaviour of vinyl ester resins. Polymer 33:4210–4214. https://doi.org/10.1016/0032-3861(92)90631-6

    Article  CAS  Google Scholar 

  64. Kessler MR, Zhang C (2018) Vanillin methacrylates and polymers therefrom. US Patent 0201703 A1

  65. Choudhary MS, Varma IK (1993) Vinyl ester resins, 3Ϯ. Effect of ethyl methacrylate on thermal and mechanical properties. Macrmol Mater Eng 209:33–39. https://doi.org/10.1002/apmc.1993.052090104

    Article  CAS  Google Scholar 

  66. Kant K, Mishra A, Rai JSP (1992) Curing studies on vinyl ester resin using acrylates as reactive diluents. Polym Int 28:189–192. https://doi.org/10.1002/pi.4990280303

    Article  CAS  Google Scholar 

  67. Scott TF, Cook WD, Forsythe JS. Photo-DSC cure kinetics of vinyl ester resins II: influence of diluent concentration. Polymer 44: 671–680. https://doi.org/10.1016/S0032-3861(02)00788-7

  68. Bhatnagar R, Varma LK (1989) Effect of α-Methylstyrene of the curing behaviour of vinyl ester resins. J Therm Ana 35:1241–1249. https://doi.org/10.1007/bf01913044

    Article  CAS  Google Scholar 

  69. Yu A, Serum EM, Renner AC et al (2018) Renewable reactive diluents as practical styrene replacements in bio-based vinyl ester thermosets. ACS Sustain Chem Eng 6:12586–12592. https://doi.org/10.1021/acssuschemeng.8b03356

    Article  CAS  Google Scholar 

  70. Jin L, Agag T, Ishida H (2013) Use of allyl-functional benzoxazine monomers as replacement for styrene in vinyl ester resins. Polym Int 62:71–78. https://doi.org/10.1002/pi.4279

    Article  CAS  Google Scholar 

  71. Yadava SK, Schmalbachb KM, Kinaci E et al (2018) Recent advances in plant-based vinyl ester resins and reactive diluents. Eur Polym J 98:199–215. https://doi.org/10.1016/j.eurpolymj.2017.11.002

    Article  CAS  Google Scholar 

  72. Can E, La Scala JJ, Sands JM, Palmese GR (2007) The synthesis of 9–10 dibromo stearic acid glycidyl methacrylate and its use in vinyl ester resins. J Appl Polym Sci 106:3833–3842. https://doi.org/10.1002/app.26249

    Article  CAS  Google Scholar 

  73. Stanzione JF, Sadler JM, La Scala JJ, Wool RP (2012) Lignin model compounds as bio-based reactive diluents for liquid molding resins. Chemsuschem 5:1291–1297. https://doi.org/10.1002/cssc.201100687

    Article  CAS  PubMed  Google Scholar 

  74. Palmese GR, La Scala JJ, Sadler JM et al (2014) Renewable bio-based (meth) acrylated monomers as vinyl ester cross-linkers. US Patent 20140249285A1

  75. Stanzione JF, Giangiulio PA, Sadler JM, La Scala JJ, Wool RP (2013) Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustain Chem Eng 1:419–426. https://doi.org/10.1021/sc3001492

    Article  CAS  Google Scholar 

  76. Bassett AW, Rogers DP, Sadler JM et al (2016) The effect of impurities in reactive diluents prepared from lignin model compounds on the properties of vinyl ester resins. J Appl Polym Sci 133:43817–43827. https://doi.org/10.1002/app.43817

    Article  CAS  Google Scholar 

  77. Popadyuk A, Breuer A, Bahr J, Tarnavchyk I et al (2018) Sucrose octaesters as reactive diluents for alkyd coatings. J Coat Technol Res 15:481–488. https://doi.org/10.1007/s11998-017-0016-5

    Article  CAS  Google Scholar 

  78. Wang H, Zhang C, Zeng W, Zhou Q (2019) Making alkyd greener: modified cardanol as bio-based reactive diluents for alkyd coating. Prog Org Coat 135:281–290. https://doi.org/10.1016/j.porgcoat.2019.06.018

    Article  CAS  Google Scholar 

  79. Wanga H, Zhanga C, Zhoub Y, Zhou Q (2020) Improvement of corrosion resistance and solid content of zinc phosphate pigmented alkyd coating by methacrylated cardanol. Mater Today Commun 24:101139. https://doi.org/10.1016/j.mtcomm.2020.101139

    Article  CAS  Google Scholar 

  80. Muizebelt WJ, Hubert JC, Nielen MWF et al (2000) Crosslink mechanisms of high-solids alkyd resins in the presence of reactive diluents. Prog Org Coat 40:121–130. https://doi.org/10.1016/S0300-9440(00)00121-1

    Article  CAS  Google Scholar 

  81. Nalawade PP, Soucek MD (2015) Modified soybean oil as a reactive diluent: coating performance. J Coat Technol Res 12:1005–1021. https://doi.org/10.1007/s11998-015-9691-2

    Article  CAS  Google Scholar 

  82. Wutticharoenwong K, Soucek MD (2010) Synthesis of tung oil based reactive diluents. Macromol Mater Eng 295:1097–1106. https://doi.org/10.1002/mame.201000099

    Article  CAS  Google Scholar 

  83. Wutticharoenwong K, Dziczkowski J, Soucek MD (2012) Tung based reactive diluents for alkyd systems: film properties. Prog Org Coat 73:283–290. https://doi.org/10.1016/j.porgcoat.2011.03.017

    Article  CAS  Google Scholar 

  84. Thanamongkollit N, Miller KR, Soucek MD (2012) Synthesis of UV-curable tung oil and UV-curable tung oil-based alkyd. Prog Org Coat 73:425–434. https://doi.org/10.1016/j.porgcoat.2011.02.003

    Article  CAS  Google Scholar 

  85. Biermann U, Butte W, Holtgrefe R et al (2010) Esters of calendula oil and tung oil as reactive diluents for alkyd resins. Eur J Lipid Sci Technol 112:103–109. https://doi.org/10.1002/ejlt.200900142

    Article  CAS  Google Scholar 

  86. Berry-Walker Y, Sheets AC, Trumbo DL (2005) Use of a fatty acid oxazoline derivative as a reactive diluent. Surf Coat Int B Coat Trans 88:277–280. https://doi.org/10.1007/BF02699584

    Article  CAS  Google Scholar 

  87. Van Haveren J, Oostveen EA, Miccichè F et al (2007) Resins and additives for powder coatings and alkyd paints, based on renewable resources. J Coat Technol Res 4:177–186. https://doi.org/10.1007/s11998-007-9020-5

    Article  CAS  Google Scholar 

  88. Maurya SD, Kurmvanshi SK, Mohanty S, Nayak SK (2018) A review on acrylate-terminated urethane oligomers and polymers: synthesis and applications. Polym Plast Technol Eng 57:625–656. https://doi.org/10.1080/03602559.2017.1332764

    Article  CAS  Google Scholar 

  89. Nabeth B, Gerard JF, Pascault JP (1996) Dynamic mechanical properties of UV-curable polyurethane acrylate with various reactive diluents. J Appl Polym Sci 60:2113–2123. https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12%3c2113::AID-APP8%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  90. Srivastava A, Agarwal D, Mistry S, Singh J (2008) UV curable polyurethane acrylate coatings for metal surfaces. Pigm Resin Technol 37:217–223. https://doi.org/10.1108/03699420810887843

    Article  CAS  Google Scholar 

  91. Kwon JY, Yoo HJ, Kim HD (2001) Effect of chemical structure on the properties of UV-cured polyurethane acrylates films. Fibers Polym 2:141–147. https://doi.org/10.1007/BF02875327

    Article  CAS  Google Scholar 

  92. Lin SB, Tsay SY, Speckhard TA et al (1984) Properties of UV-cured polyurethane acrylates: effect of polyol type and molecular weight. Chem Eng Commun 30:251–273. https://doi.org/10.1080/00986448408911131

    Article  CAS  Google Scholar 

  93. Eren T, Ҫolak S, Küsefoglu SH (2006) Simultaneous interpenetrating polymer networks based on bromoacrylated castor oil polyurethane. J Appl Polym Sci 100:2947–2955. https://doi.org/10.1002/app.22549

    Article  CAS  Google Scholar 

  94. Hu Y, Liu CG, Shang QQ, Zhou YH (2018) Synthesis and characterization of novel renewable castor oil based UV-curable polyfunctional polyurethane acrylate. J Coat Technol Res 15:77–85. https://doi.org/10.1007/s11998-017-9948-z

    Article  CAS  Google Scholar 

  95. Park JM, Jeon JH, Lee H et al (2015) Synthesis and properties of UV-curable polyurethane acrylates containing fluorinated acrylic monomer/ vinyltrimethoxysilane. Polym Bull 72:1921–1936. https://doi.org/10.1007/s00289-015-1380-x

    Article  CAS  Google Scholar 

  96. Wang X, Soucek MD (2013) Investigation of non-isocyanate urethane dimethacrylate reactive diluents for UV-curable polyurethane coatings. Prog Org Coat 76:1057–1067. https://doi.org/10.1016/j.porgcoat.2013.03.001

    Article  CAS  Google Scholar 

  97. Digar ML, Hung SL, Wen TC, Gopalan A (2002) Studies on cross-linked polyurethane acrylate-based electrolyte consisting of reactive vinyl/divinyl diluents. Polymer 43:1615–1622. https://doi.org/10.1016/S0032-3861(01)00737-6

    Article  CAS  Google Scholar 

  98. Yuan C, Wang M, Li H, Wang Z (2017) Preparation and properties of UV-curable waterborne polyurethane–acrylate emulsion. J Appl Polym Sci 134:45208. https://doi.org/10.1002/app.45208

    Article  CAS  Google Scholar 

  99. Hu Y, Shang Q, Tang J et al (2018) Use of cardanol-based acrylate as reactive diluent in UV-curable castor oilbased polyurethane acrylate resins. Ind Crops Prod 117:295–302. https://doi.org/10.1016/j.indcrop.2018.02.053

    Article  CAS  Google Scholar 

  100. Mequanint K, Sanderson K, Pasch H (2002) Phosphated polyurethane–acrylic dispersions: synthesis, rheological properties and wetting behaviour. Polymer 43:5341–5346. https://doi.org/10.1016/S0032-3861(02)00367-1

    Article  CAS  Google Scholar 

  101. Xu J, Rong X, Chi T et al (2013) Preparation, characterization of UV-curable waterborne polyurethane acrylate and the application in metal iron surface protection. J Appl Polym Sci 130:3142–3152. https://doi.org/10.1002/app.39539

    Article  CAS  Google Scholar 

  102. Mannari VM, Massingill JL (2006) Two-component high-solid polyurethane coating systems based on soy polyols. J Coat Technol Res 3:151–157. https://doi.org/10.1007/s11998-006-0018-1

    Article  CAS  Google Scholar 

  103. Hu Y, Feng G, Shang Q et al (2019) Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance. J Coat Technol Res 16:499–509. https://doi.org/10.1007/s11998-018-0128-6

    Article  CAS  Google Scholar 

  104. Hu Y, Shang Q, Wang C et al (2019) Renewable epoxidized cardanol-based acrylate as a reactive diluent for UV-curable resins. Polym Adv Technol 29:1852–1860. https://doi.org/10.1002/pat.4294

    Article  CAS  Google Scholar 

  105. Weia G, Xua H, Chen L et al (2019) Isosorbide-based high performance UV-curable reactive diluents. Prog Org Coat 126:162–167. https://doi.org/10.1016/j.porgcoat.2018.10.028

    Article  CAS  Google Scholar 

  106. Tathe DS, Jagtap RN (2014) Biobased reactive diluent for UV-curable urethane acrylate oligomers for wood coating. J Coat Technol Res 12:187–196. https://doi.org/10.1007/s11998-014-9616-5

    Article  CAS  Google Scholar 

  107. Chambhare SU, Lokhande GP, Jagtap RN (2017) Design and UV-curable behaviour of boron based reactive diluent for epoxy acrylate oligomer used for flame retardant wood coating. Des Monomers Polym 20:125–135. https://doi.org/10.1080/15685551.2016.1231029

    Article  CAS  PubMed  Google Scholar 

  108. Chambhare SU, Lokhande GP, Jagtap RN (2017) Synthesis and properties of phosphate-based diacrylate reactive diluent applied to UV-curable flame-retardant wood coating. J Coat Technol Res 14:255–266. https://doi.org/10.1007/s11998-016-9849-6

    Article  CAS  Google Scholar 

  109. Chambhare SU, Lokhande GP, Jagtap RN (2016) UV-curable behavior of phosphorus- and nitrogen-based reactive diluent for epoxy acrylate oligomer used for flame-retardant wood coating. J Coat Technol Res 13:703–714. https://doi.org/10.1007/s11998-015-9777-x

    Article  CAS  Google Scholar 

  110. Corley LS (1989) Stabilized flame-retardant epoxy resin composition from a brominated epoxy resin and a vinyl monomer diluent. US Patent 4,873,309

  111. Hong JW, Kim HK, Yu JA, Kim YB (2002) Characterization of UV-curable reactive diluent containing quaternary ammonium salts for antistatic coating. J Appl Polym Sci 84:132–137. https://doi.org/10.1002/app.10273

    Article  CAS  Google Scholar 

  112. Johansson K, Johansson M (2007) The effect of fatty acid methyl esters on the curing performance and final properties of thermally cured solvent-borne coil coatings. Prog Org Coat 59:146–151. https://doi.org/10.1016/j.porgcoat.2007.02.004

    Article  CAS  Google Scholar 

  113. Nameera S, Deltinb T, Sundellc PE, Johansson M (2019) Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatings. Prog Org Coat 136:105277. https://doi.org/10.1016/j.porgcoat.2019.105277

    Article  CAS  Google Scholar 

  114. Johansson K, Johansson M (2008) Fatty acid methyl ester as reactive diluent in thermally cured solvent-borne coil-coatings—the effect of fatty acid pattern on the curing performance and final properties. Prog Org Coat 63:155–159. https://doi.org/10.1016/j.porgcoat.2008.05.003

    Article  CAS  Google Scholar 

  115. Johansson K, Johansson M (2006) A model study on fatty acid methyl esters as reactive diluents in thermally cured coil coating systems. Prog Org Coat 55:382–387. https://doi.org/10.1016/j.porgcoat.2006.02.002

    Article  CAS  Google Scholar 

  116. Ohlssona K, Bergmanb T, Sundell PE et al (2012) Novel coil coating systems using fatty acid based reactive diluents. Prog Org Coat 73:291–293. https://doi.org/10.1016/j.porgcoat.2010.11.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti More.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagtap, A.R., More, A. Developments in reactive diluents: a review. Polym. Bull. 79, 5667–5708 (2022). https://doi.org/10.1007/s00289-021-03808-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03808-5

Keywords

Navigation