Skip to main content
Log in

Natural bioactive starch film from Amazon turmeric (Curcuma longa L.)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

It is evermore imperative to develop green processes and products due to the environmental and health problems facing modern society. Thus, the aims of this study were as follows: to use HPLC–MS to identify and quantify the phenolic compounds in Amazon Curcuma longa L. starch; to develop a bioactive starch film and to characterise its phenolic compounds (HPLC–MS) and antioxidant capacity (DPPH, ABTS and ORAC), as well its thickness and granular structure (SEM), mechanical (tensile strength and elongation at break) and colour (CIE-lab scale: L*, a*, b*) properties. HPLC–MS revealed eight major phenolic compounds in the C. longa starch and six in its film. The starch and the film from C. longa had high levels of antioxidant capacity, 65–92% (as measured by DPPH and ABTS). Furthermore, C. longa exhibited a smooth structural surface and strong resistance to tensile force, as well as maintaining its elasticity as measured by mechanical assays (tensile strength and elongation at break). Based on the obtained results a novel biodegradable starch film was obtained applying a single matrix, the Amazon Curcuma longa L. starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maniglia BC, Domingos JR, de Paula RL, Tapia-Blácido DR (2014) Development of bioactive edible film from turmeric dye solvent extraction residue. LWT Food Sci Technol 56:269–277

    Article  CAS  Google Scholar 

  2. Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74:2401–2430

    Article  CAS  Google Scholar 

  3. Talón E, Trifkovic KT, Nedovic VA et al (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 157:1153–1161

    Article  CAS  PubMed  Google Scholar 

  4. Salgado PR, Ortiz CM, Musso YS et al (2015) Edible films and coatings containing bioactives. Curr Opin Food Sci 5:86–92

    Article  Google Scholar 

  5. Hornung PS, Ávila S, Lazzarotto M et al (2017) Enhancement of the functional properties of Dioscoreaceas native starches: mixture as a green modification process. Thermochim Acta 649:31–40

    Article  CAS  Google Scholar 

  6. Li M, Xie F, Hasjim J et al (2015) Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline. Carbohydr Polym 117:262–270

    Article  CAS  PubMed  Google Scholar 

  7. Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S (2017) Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll 63:488–495

    Article  CAS  Google Scholar 

  8. Shah U, Naqash F, Gani A, Masoodi FA (2016) Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf 15:568–580

    Article  CAS  Google Scholar 

  9. Mali S, Grossmann MVE, Garcia MA et al (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50:379–386

    Article  CAS  Google Scholar 

  10. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076

    Article  CAS  Google Scholar 

  11. Van Hung P, Vo TND (2017) Structure, physicochemical characteristics, and functional properties of starches isolated from yellow (Curcuma longa) and black (Curcuma caesia) turmeric rhizomes. Starch Stärke 69:1600285

    Article  CAS  Google Scholar 

  12. Anubala S, Sekar R, Nagaiah K (2014) Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis. Talanta 123:10–17

    Article  CAS  PubMed  Google Scholar 

  13. Berni RF, Chaves FCM, Pinheiro JB, Vaz APA (2014) Produção de açafrão em função de acessos e do peso de rizomas-semente. Rev Bras Plantas Med 16:765–770

    Article  Google Scholar 

  14. Musso YS, Salgado PR, Mauri AN (2016) Smart edible films based on gelatin and curcumin. Food Hydrocoll 66:8–15

    Article  CAS  Google Scholar 

  15. Global Market Insights (2016) Curcumin market size by application (food, pharmaceutical, cosmetics), industry analysis report, regional outlook, growth potential, price trend, competitive market share and forecast, 2016–2024. http://www.gminsights.com/industry-analysis/curcumin-market. Accessed 05 Oct 2017

  16. Nguyen CM, Nguyen TN, Choi GJ et al (2014) Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour Technol 151:227–235

    Article  CAS  PubMed  Google Scholar 

  17. Pauli RB, Quast LB, Demiate IM, Sakanaka LS (2011) Production and characterization of oxidized cassava starch (Manihot esculenta Crantz) biodegradable films. Starch/Staerke 63:595–603

    Article  CAS  Google Scholar 

  18. Jiang H, Jane J, Acevedo D et al (2010) Variations in starch physicochemical properties from a generation-means analysis study using amylomaize V and VII parents. J Agric Food Chem 58:5633–5639

    Article  CAS  PubMed  Google Scholar 

  19. AOAC (2000) American Association of Official Analytical Chemists. Official methods of analysis of The American Association of Official Analytical Chemists, 17th edn. AOAC, Gaithersburg

    Google Scholar 

  20. Zhang H, Shao Y, Bao J, Beta T (2015) Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem 172:630–639

    Article  CAS  PubMed  Google Scholar 

  21. Singleton VL, Rossi JR (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  22. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  23. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  24. Qiu Y, Liu Q, Beta T (2010) Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem 121:140–147

    Article  CAS  Google Scholar 

  25. Chen Z, Yu L, Wang X et al (2016) Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination. Food Chem 194:608–618

    Article  CAS  PubMed  Google Scholar 

  26. Luchese CL, Frick JM, Patzer VL et al (2015) Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocoll 45:203–210

    Article  CAS  Google Scholar 

  27. ASTM (1996) Standard test methods for tensile properties of thin plastic sheeting, D882-91, 1996th edn. ASTM, Philadelphia

    Google Scholar 

  28. Galdeano MC, Wilhelm AE, Mali S, Grossmann MVE (2013) Influence of thickness on properties of plasticized oat starch films. Braz Arch Biol Technol 56:637–644

    Article  CAS  Google Scholar 

  29. ASTM E313-05 (2005) Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. ASTM International, West Conshohocken

    Google Scholar 

  30. Robertson AR (1977) The CIE 1976 color-difference formulae. Color Res Appl 2:7–11

    Article  Google Scholar 

  31. Kuttigounder D, Lingamallu JR, Bhattacharya S (2011) Turmeric powder and starch: selected physical, physicochemical, and microstructural properties. J Food Sci 76:C1284–C1291

    Article  CAS  PubMed  Google Scholar 

  32. Sajitha PK, Sasikumar B (2015) Qualitative and quantitative variation in starch from four species of Curcuma. Cytologia (Tokyo) 80:45–50

    Article  Google Scholar 

  33. Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:153–177

    Article  CAS  Google Scholar 

  34. Lordêlo M, Silva C, Costa RS et al (2010) Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Ciências Agrárias 31:669–682

    Article  Google Scholar 

  35. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55

    Article  CAS  PubMed  Google Scholar 

  36. Ragaee S, Abdel-Aal ESM, Noaman M (2006) Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem 98:32–38

    Article  CAS  Google Scholar 

  37. Selvam R, Subramanian L, Gayathri R, Angayarkanni N (1995) The anti-oxidant activity of turmeric (Curcuma longa). J Ethnopharmacol 47:59–67

    Article  CAS  PubMed  Google Scholar 

  38. Araújo GKP, Souza SJ, Silva MV et al (2015) Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int J Food Sci Technol 50:2080–2087

    Article  CAS  Google Scholar 

  39. López D, Márquez A, Gutiérrez-Cutiño M et al (2017) Edible film with antioxidant capacity based on salmon gelatin and boldine. LWT Food Sci Technol 77:160–169

    Article  CAS  Google Scholar 

  40. Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids. J Food Eng 116:695–702

    Article  CAS  Google Scholar 

  41. Ciannamea EM, Stefani PM, Ruseckaite RA (2016) Properties and antioxidant activity of soy protein concentrate films incorporated with red grape extract processed by casting and compression molding. LWT Food Sci Technol 74:353–362

    Article  CAS  Google Scholar 

  42. Arabestani A, Kadivar M, Shahedi M et al (2016) Characterization and antioxidant activity of bitter vetch protein-based films containing pomegranate juice. LWT Food Sci Technol 74:77–83

    Article  CAS  Google Scholar 

  43. Bitencourt CM, Fávaro-Trindade CS, Sobral PJA, Carvalho RA (2014) Gelatin-based films additivated with curcuma ethanol extract: antioxidant activity and physical properties of films. Food Hydrocoll 40:145–152

    Article  CAS  Google Scholar 

  44. Lim S-T, Jane J-L (1992) Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnol Prog 8:51–57

    Article  CAS  Google Scholar 

  45. Arvanitoyannis I, Biliaderis CG (1998) Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chem 62:333–342

    Article  CAS  Google Scholar 

  46. Mali S, Grossmann MVE, García MA et al (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng 75:453–460

    Article  CAS  Google Scholar 

  47. Kalaycıoğlu Z, Torlak E, Akın-Evingür G et al (2017) Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol 101:882–888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Government of Canada through the Emerging Leaders of the Americas Program (ELAP) for the financial resources provided and CAPES-Brazil. Equipment used for HPLC-LC analysis of phenolic compounds and ORAC assay was generously funded by the Canada Foundation for Innovation (New Opportunities Fund and Leaders Opportunities Fund). The authors also acknowledge the technical assistance provided by Alison Ser of the Department of Food and Human Nutritional Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary Hoffmann Ribani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornung, P.S., Masisi, K., Malunga, L.N. et al. Natural bioactive starch film from Amazon turmeric (Curcuma longa L.). Polym. Bull. 75, 4735–4752 (2018). https://doi.org/10.1007/s00289-018-2285-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2285-2

Keywords

Navigation