Skip to main content
Log in

The Effect of Tunicamycin on the Glucose Uptake, Growth, and Cellular Adhesion in the Protozoan Parasite Crithidia fasciculata

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y (1991) The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem 266:24632–24636

    CAS  PubMed  Google Scholar 

  2. Azema L, Claustre S, Alric I, Blonski C, Willson M, Perié J, Baltz T, Tetaud E, Bringaud F, Cottem D, Opperdoes FR, Barrett MP (2004) Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. Biochem Pharmacol 67:459–467

    Article  CAS  PubMed  Google Scholar 

  3. Cai G, Salonikidis PS, Fei J, Schwarz W, Schulein R, Reutter W, Fan H (2005) The role of N-glycosylation in the stability, trafficking, and GABA uptake of GABA transporter 1. FEBS J 272:1625–1638

    Article  CAS  PubMed  Google Scholar 

  4. Barrett MP, Tetaud E, Seyfang A, Bringaud F, Baltz T (1995) Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Biochem J 312:687–691

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Barrett MP, Tetaud E, Seyfang S, Bringaud F, Baltz T (1998) Trypanosome glucose transporters. Mol Biochem Parasitol 91:195–205

    Article  CAS  PubMed  Google Scholar 

  6. Bonaldo MC, Souto-Padron T, De Souza W, Goldenberg S (1988) Cell–substrate adhesion during Trypanosoma cruzi differentiation. J Cell Biol 106:1349–1358

    Article  CAS  PubMed  Google Scholar 

  7. Bringaud F, Rivière L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149:1–9

    Article  CAS  PubMed  Google Scholar 

  8. Brooker BE (1971) Flagellar attachment and detachment of Crithidia fasciculata to the gut wall of Anopheles gambiae. Protoplasma 73:191–202

    Article  CAS  PubMed  Google Scholar 

  9. Burchmore RJ, Rodriguez-Contreras D, McBride K, Merkel P, Barrett MP, Modi G, Sacks D, Landfear SM (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci USA 100:3901–3906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fauquenoy S, Morelle W, Hovasses A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii–host cell interactions. Mol Cell Proteomics 7:891–910

    Article  CAS  PubMed  Google Scholar 

  11. Feugeas JP, Néel D, Pavia AA, Laham A, Goussault Y, Derappe C (1990) Glycosylation of the human erythrocyte glucose transporter is essential for glucose transport activity. Biochim Biophys Acta 1030:60–64

    Article  CAS  PubMed  Google Scholar 

  12. Fiedler K, Simons K (1995) The role of N-glycans in the secretory pathway. Cell 81:309–312

    Article  CAS  PubMed  Google Scholar 

  13. Finnie JW (2001) Effect of tunicamycin on hepatocytes in vitro. J Comp Pathol 125:318–321

    Article  CAS  PubMed  Google Scholar 

  14. Galvez Rojas RL, Frossard ML, Machado Motta MC, Silber AM (2008) l-Proline uptake in Crithidia deanei is influenced by its endosymbiont bacterium. FEMS Microbiol Lett 283:15–22

    Article  PubMed  Google Scholar 

  15. Gao J, Chen T, Hu G, Gong Y, Qiang B, Yuan J, Peng X (2008) Nectin-like molecule 1 is a glycoprotein with a single N-glycosylation site at N290KS which influences its adhesion activity. Int J Oncol 32(5):1021–1031

    Google Scholar 

  16. Gorga FR, Baldwin SA, Lienhard GE (1979) The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated. Biochem Biophys Res Commun 91:955–961

    Article  CAS  PubMed  Google Scholar 

  17. Gotz G, Gañán S, Parodi AJ (1991) Glucosylation of glycoproteins in Crithidia fasciculata. Mol Biochem Parasitol 45:265–273

    Article  CAS  PubMed  Google Scholar 

  18. Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF (2012) Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections. Int J Nanomed. doi:10.2147/IJN.S35510

    Google Scholar 

  19. Haspel HC, Wilk EW, Birnbaum MJ, Cushman SW, Rosen OM (1986) Glucose deprivation and hexose transporter polypeptides of murine fibroblasts. J Biol Chem 261:6778–6789

    CAS  PubMed  Google Scholar 

  20. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  21. Hirai-Fujita Y, Yamamoto-Hino M, Kanie O, Goto S (2008) N-Glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity. FEBS Lett 582:2572–2576

    Article  CAS  PubMed  Google Scholar 

  22. Holsbeecks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 10:556–564

    Article  Google Scholar 

  23. Joet T, Holterman L, Stedman TT et al (2002) Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. Biochem J 368:923–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kitagawa K, Nishin H, Iwashima A (1985) Effect of tunicamycin on hexose transport in mouse embryo fibroblast Swiss 3T3 cells. Biochim Biophys Acta 821:67–71

    Article  CAS  PubMed  Google Scholar 

  25. Kitamura A (1982) Attachment of Paramecium to polystyrene surfaces: a model system for the analysis of sexual cell recognition and nuclear activation. J Cell Sci 58:185–199

    CAS  PubMed  Google Scholar 

  26. Knodler LA, Schofield PJ, Edwards MR (1992) Glucose transport in Crithidia luciliae. Mol Biochem Parasitol 56:1–14

    Article  CAS  PubMed  Google Scholar 

  27. Landfear S, Ignatuschenko M (2001) The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 115:1–17

    Article  CAS  PubMed  Google Scholar 

  28. Landfear SM (2008) Drugs and transporters in kinetoplastid protozoa. Adv Exp Med Biol 625:22–32

    Article  CAS  PubMed  Google Scholar 

  29. Landfear SM (2009) Transporters for drug delivery and as drug targets in parasitic protozoa. Clin Pharmacol Ther 87:122–125

    Article  PubMed  Google Scholar 

  30. Luk FC, Johnson TM, Beckers CJ (2008) N-Linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii. Mol Biochem Parasitol 157:169–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. McDonald CJ, Sampson J (1983) The effects of inhibition of protein glycosylation on the aggregation of Dictyostelium discoideum. J Embryol Exp Morphol 78:229–248

    CAS  PubMed  Google Scholar 

  32. Olden K, Pratt RM, Jaworski C, Yamada KM (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci USA 76:3343–3347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Onetti R, Baulida J, Bassols A (1997) Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1. FEBS Lett 407:267–270

    Article  CAS  PubMed  Google Scholar 

  34. Opperdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41:127–151

    Article  CAS  PubMed  Google Scholar 

  35. Piras R, Piras MM, Henriquez D (1982) The effect of inhibitors of macromolecular biosynthesis on the in vitro infectivity and morphology of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol 6(2):83–92

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez-Contreras D, Feng X, Keeney KM, Bouwer HG, Landfear SM (2007) Phenotypic characterization of a glucose transporter null mutant in Leishmania Mexicana. Mol Biochem Parasitol 153:9–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Roskens H, Erlandsen SL (2002) Inhibition of in vitro attachment of Giardia trophozoites by mucin. J Parasitol 88:69–873

    Article  Google Scholar 

  38. Scolaro EJ, Ames RP, Brittingham A (2005) Growth-phase dependent substrate adhesion in Crithidia fasciculata. J Eukaryot Microbiol 52:17–22

    Article  PubMed  Google Scholar 

  39. Souto-Padrón T, de Souza W (1985) Sialoglycoproteins and sialoglycolipids contribute to the negative surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi. Biochim Biophys Acta 814:163–169

    Article  PubMed  Google Scholar 

  40. Souto-Padrón T (1989) de Souza W (1989) The effect of tunicamycin and monensin on the association of Trypanosoma cruzi with resident macrophages. Parasitol Res 76(2):98–106

    Article  PubMed  Google Scholar 

  41. Takatsuki A, Tamura G (1982) Inhibition of glycoconjugate biosynthesis by tunicamycin. In: Tamura G (ed) Tunicamycin. Japan Scientific Societies Press, Tokyo, pp 35–70

    Google Scholar 

  42. Tetaud E, Chabas S, Giroud C, Barrett MP, Baltz T (1996) Hexose uptake in Trypanosoma cruzi: structure–activity relationship between substrate and transporter. Biochem J 317:353–359

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Tetaud E, Barrett MP, Bringaud F, Baltz T (1997) Kinetoplastid glucose transporters. Biochemistry 325:569–580

    CAS  Google Scholar 

  44. Tielens AG, van Hellemond JJ (2009) Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 25:482–490

    Article  PubMed  Google Scholar 

  45. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  46. Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA (2001) Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat 4:50–65

    Article  CAS  PubMed  Google Scholar 

  47. Wallace FG (1943) Flagellate parasites of mosquitoes with special reference to Crithidia fasciculata Leger, 1902. J Parasitol 29:196–205

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Professor Luis Carlos de Souza Ferreira and Prof. Rita de Cássia Café Ferreira for their great support, helpful tips, learning, friendship, and invaluable scientific discussions received in the CEVAT laboratory, São Paulo University, São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, R., Segovia, C., Trombert, A.N. et al. The Effect of Tunicamycin on the Glucose Uptake, Growth, and Cellular Adhesion in the Protozoan Parasite Crithidia fasciculata . Curr Microbiol 69, 541–548 (2014). https://doi.org/10.1007/s00284-014-0620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0620-x

Keywords

Navigation