Skip to main content
Log in

Carbon Catabolite Repression-Independent and pH-Dependent Production of Indoles by Rubrivivax benzoatilyticus JA2

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Rubrivivax benzoatilyticus JA2 produces indole derivatives (indoles) from aniline, anthranilate or l-tryptophan. Glucose repressed indole production in R. benzoatilyticus JA2, while malate had no effect. Growth of R. benzoatilyticus JA2 on glucose resulted in decrease in culture pH (6.4) compared with malate (8.4). Growth of R. benzoatilyticus JA2 on sugar carbon sources decreased culture pH (6.4–6.6) and indole production. Further, culture pH of 6.4 repressed the indole production, and pH 8.4 promoted the production irrespective of carbon sources used for growth. Moreover, correlation between indole production and culture pH was observed, where acidic pH inhibited indole production, while alkaline pH promoted the production, suggesting the role of pH in indole production. Tryptophan-catabolizing enzyme activities are significantly high in malate-grown cultures (pH 8.4) compared with that of the glucose (pH 6.4)-grown cultures and corroborated well with indole production, indicating their role in indole production. These results confirm that indole production in R. benzoatilyticus JA2 is pH dependent rather than carbon catabolite repression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

    Article  PubMed  CAS  Google Scholar 

  2. Bizzini A, Entenza JM, Moreillon P (2007) Loss of penicillin tolerance by inactivating the carbon catabolite repression determinant CcpA in Streptococcus gordonii. J Antimicrob Chemother 59:607–615

    Article  PubMed  CAS  Google Scholar 

  3. Blankenhorn D, Phillips J, Slonczewski JL (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216

    PubMed  CAS  Google Scholar 

  4. Bouknight RR, Sadoff HL (1974) Tryptophan catabolism in Bacillus megaterium. J Bacteriol 121:70–76

    Google Scholar 

  5. de Crombrugghe B, Perlman RL, Varmus HE, Pastan I (1969) Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3′5′-monophosphate. J Biol Chem 244:5828–5835

    PubMed  Google Scholar 

  6. Espesol EA, Tilburn J, Arst HN Jr, Pehalval MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956

    Google Scholar 

  7. Gordon SA, Paleg LG (1957) Quantitative measurement of indole acetic acid. Plant Physiol 10:37–48

    Google Scholar 

  8. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  9. Haavik HI (1974) Studies on the formation of bacitracin by Bacillus licheniformis: role of catabolite repression and organic acids. J Gen Microbiol 84:321–326

    Article  PubMed  CAS  Google Scholar 

  10. Hallis BA, Thurston CF, Mason JR (1991) Glucose control of staphylococcal enterotoxin A synthesis and location is mediated by cyclic AMP. FEMS Microbiol Lett 64:247–251

    Article  PubMed  CAS  Google Scholar 

  11. Han TH, Lee JH, Cho MH, Wood TK, Lee J (2011) Environmental factors affecting indole production in Escherichia coli. Res Microbiol 162:108–116

    Article  PubMed  CAS  Google Scholar 

  12. Isaacs H, Chao D, Yanofsky C, Saier MH Jr (1994) Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology 140:2125–2134

    Article  PubMed  CAS  Google Scholar 

  13. Jackson DW, Simecka JW, Romeo T (2002) Catabolite Repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410

    Article  PubMed  CAS  Google Scholar 

  14. Jensen MT, Cox RP, Jensen BB (1995) 3-Methylindole (Skatole) and Indole Production by Mixed Populations of Pig Fecal Bacteria. Appl Environ Microbiol 61:3180–3184

    PubMed  CAS  Google Scholar 

  15. Kalyan CS, Srinivas TNR, Anil Kumar P, Sasikala Ch, Ramana ChV (2007) Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov. Int J Syst Evol Microbiol 57:2453–2457

    Article  Google Scholar 

  16. Kim DH, Lee JH, Bae EA, Han MJ (1995) Induction and inhibition of indole production of intestinal bacteria. Arch Pharm Res 18:351–355

    Article  CAS  Google Scholar 

  17. Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    PubMed  CAS  Google Scholar 

  18. Liang W, Pascual-Montano A, Silva AJ, Benitez JA (2007) The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholera. Microbiology 153:2964–2975

    Article  PubMed  CAS  Google Scholar 

  19. Mendez M, Huang IH, Ohtani K, Grau R, Shimizu T, Sarker MR (2008) Carbon catabolite repression of Type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 190:48–60

    Article  PubMed  CAS  Google Scholar 

  20. Mujahid Md, Sasikala Ch, Ramana ChV (2010) Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Curr Microbiol 61:285–290

    Article  PubMed  CAS  Google Scholar 

  21. Md Mujahid, Sasikala Ch, Ramana ChV (2011) Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2. Appl Microbiol Biotechnol 89:1001–1008. doi:10.1007/s00253-010-2951-2

    Article  Google Scholar 

  22. Muller C, Petruschka L, Cuypers H, Burchhardt G, Herrmann H (1996) Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol 178:2030–2036

    PubMed  CAS  Google Scholar 

  23. Murry PA, Uffen RL (1988) Influence of cyclic A M P on the growth response and anaerobic metabolism of carbon monoxide in Rhodocyclus gelatinosus. Arch Microbiol 149:312–316

    Article  Google Scholar 

  24. Penalva MA, Tilburn J, Bignell E, Arst HN Jr (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300

    Article  PubMed  CAS  Google Scholar 

  25. Prasuna ML, Mujahid M, Sasikala Ch, Ramana ChV (2012) l-Phenylalanine catabolism and L-phenyllactic acid production by a phototrophic bacterium, Rubrivivax benzoatilyticus JA2. Microbiol Res 167:526–531

    Article  PubMed  Google Scholar 

  26. Ranjith NK, Sasikala Ch, Ramana ChV (2010) l-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway. Biodegradation 21:825–832

    Article  Google Scholar 

  27. Ranjith NK, Sasikala Ch, Ramana ChV (2010) Rubrivivaxin, a new cytotoxic and cyclooxygenase-I inhibitory metabolite from Rubrivivax benzoatilyticus JA2. World J Microbiol Biotechnol 27:11–16

    Google Scholar 

  28. Ranjith NK, Sasikala Ch, Ramana ChV (2007) Rhodethrin: a novel indole terpenoid ether produced by Rhodobacter sphaeroides has cytotoxic and phytohormonal activities. Biotechnol Lett 29:1399–1402

    Article  PubMed  CAS  Google Scholar 

  29. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36:146–167

    Article  PubMed  CAS  Google Scholar 

  30. Shin BS, Choi SK, Smith I, Park SH (2000) Analysis of tnrA alleles which result in a glucose-resistant sporulation phenotype in Bacillus subtilis. J Bacteriol 182:5009–5012

    Article  PubMed  CAS  Google Scholar 

  31. Sole M, Francia A, Rius N, Loren JG (1997) The role of pH in the glucose effect on prodigiosin production by non-proliferating cells of Serretia marcescens. Lettin Appl Microbiol 25:81–84

    Article  CAS  Google Scholar 

  32. Solé M, Rius N, Lorén JG (2000) Rapid extracellular acidification induced by glucose metabolism in non-proliferating cells of Serratia marcescens. Int Microbiol 3:39–43

    PubMed  Google Scholar 

  33. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  34. Vikas S, Pradeep Kumar k, Devender P (2010) Biological importance of the indole nucleus in recent years: a comprehensive review. J Heterocyclic Chem 47:491–502

    Google Scholar 

  35. Xu ZR, Hu CH, Wang MQ (2002) Effects of fructooligosaccharide on conversion of l-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J Gen Appl Microbiol 48:83–89

    Article  PubMed  CAS  Google Scholar 

  36. Yohannes E, Barnhart DM, Slonczewski JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186:192–199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mujahid. Md thanks CSIR, Government of India, for the award of JRF. Facilities used under the FIST and CAS supported by DST and UGC, Government of India, respectively, are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. V. Ramana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujahid, M., Sasikala, C. & Ramana, C.V. Carbon Catabolite Repression-Independent and pH-Dependent Production of Indoles by Rubrivivax benzoatilyticus JA2. Curr Microbiol 67, 399–405 (2013). https://doi.org/10.1007/s00284-013-0378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0378-6

Keywords

Navigation