Skip to main content

Advertisement

Log in

Worker senescence and the sociobiology of aging in ants

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Senescence, the decline in physiological and behavioral function with increasing age, has been the focus of significant theoretical and empirical research in a broad array of animal taxa. Preeminent among invertebrate social models of aging are ants, a diverse and ecologically dominant clade of eusocial insects characterized by reproductive and sterile phenotypes. In this review, we critically examine selection for worker life span in ants and discuss the relationship between functional senescence, longevity, task performance, and colony fitness. We did not find strong or consistent support for the hypothesis that demographic senescence in ants is programmed, or its corollary prediction that workers that do not experience extrinsic mortality die at an age approximating their life span in nature. We present seven hypotheses concerning how selection could favor extended worker life span through its positive relationship to colony size and predict that large colony size, under some conditions, should confer multiple and significant fitness advantages. Fitness benefits derived from long worker life span could be mediated by increased resource acquisition, efficient division of labor, accuracy of collective decision-making, enhanced allomaternal care and colony defense, lower infection risk, and decreased energetic costs of workforce maintenance. We suggest future avenues of research to examine the evolution of worker life span and its relationship to colony fitness and conclude that an innovative fusion of sociobiology, senescence theory, and mechanistic studies of aging can improve our understanding of the adaptive nature of worker life span in ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams ES (1990) Boundary disputes in the territorial ant Azteca trigona: effects of asymmetries in colony size. Anim Behav 39:321–328

    Google Scholar 

  • Adams ES (1998) Territory size and shape in fire ants: a model based on neighborhood interactions. Ecology 79:1125–1134

    Google Scholar 

  • Adams ES (2003) Experimental analysis of territory size in a population of the fire ant Solenopsis invicta. Behav Ecol 14:48–53

    Google Scholar 

  • Agarwal M, Giannoni Guzmán M, Morales-Matos C, Del Valle Díaz RA, Abramson CI, Giray T (2011) Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE 6:e25371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199–221

    Google Scholar 

  • Al-Khafaji K, Tuljapurkar S, Carey JR, Page RE (2009) Hierarchical demography: a general approach with an application to honey bees. Ecology 90:556–566

    PubMed  Google Scholar 

  • Amador-Vargas S (2012) Behavioral responses of acacia ants correlate with age and location on the host plant. Insect Soc 59:341–350

    Google Scholar 

  • Amdam GV (2011) Social context, stress, and plasticity of aging. Aging Cell 10:18–27

    CAS  PubMed  Google Scholar 

  • Amdam GV, Page RE (2005) Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Res Rev 4:398–408

    PubMed Central  PubMed  Google Scholar 

  • Amdam GV, Simões ZLP, Hagen A, Norberg K, Schrøder K, Mikkelsen Ø, Kirkwood TBL, Omholt SW (2004) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 39:767–773

    CAS  PubMed  Google Scholar 

  • Amdam GV, Aase ALTO, Seehuus S-C, Fondrk MK, Norberg K, Hartfelder K (2005) Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40:939–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amdam GV, Rueppell O, Fondrk MK, Page RE, Nelson CM (2009) The nurse’s load: early life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera). Exp Gerontol 44:467–471

    PubMed Central  PubMed  Google Scholar 

  • Anderson C, Ratnieks F (1999) Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am Nat 154:521–535

    PubMed  Google Scholar 

  • Asano E, Cassill DL (2011) Impact of worker longevity and other endogenous factors on colony size in the fire ant, Solenopsis invicta. Insect Soc 58:551–557

    Google Scholar 

  • Austad SN (2009) Is there a role for new invertebrate models for aging research? J Gerontol Biol Sci 64:192–194

    Google Scholar 

  • Batchelor TP, Briffa M (2011) Fight tactics in wood ants: individuals in smaller groups fight harder but die faster. Proc R Soc Lond B 278:3243–3250

    Google Scholar 

  • Baudisch A, Vaupel J (2010) Senescence vs. sustenance: evolutionary-demographic models of aging. Demogr Res 23:655–668

    Google Scholar 

  • Behrends A, Scheiner R (2010) Learning at old age: a study on winter bees. Front Behav Neurosci 4:15

    PubMed Central  PubMed  Google Scholar 

  • Behrends A, Scheiner R, Baker N, Amdam GV (2007) Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp Gerontol 42:1146–1153

    PubMed Central  PubMed  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    CAS  PubMed  Google Scholar 

  • Bonasio R, Zhang G, Ye C, Mutti NS, Fang X et al (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonner JT (1993) Dividing the labour in cells and societies. Curr Sci 64:459–466

    Google Scholar 

  • Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial hymenoptera. Phil Trans R Soc B 351:947–975

    Google Scholar 

  • Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257

    Google Scholar 

  • Bourke AFG (2007) Kin selection and the evolutionary theory of aging. Ann Rev Ecol Evol Syst 38:103–128

    Google Scholar 

  • Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci U S A 103:18172–18177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bredesen DE (2004) The non-existent aging program: how does it work? Aging Cell 3:255–259

  • Brown JJ, Traniello JFA (1998) Regulation of brood-care behavior in the dimorphic castes of the ant Pheidole morrisi (Hymenoptera: Formicidae): effects of caste ratio, colony size, and colony needs. J Insect Behav 11:209–219

    Google Scholar 

  • Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 178:439–445

    PubMed  Google Scholar 

  • Burd M (1996) Foraging performance by Atta colombica, a leaf-cutting ant. Am Nat 148:597–612

    Google Scholar 

  • Calabi P, Porter SD (1989) Worker longevity in the fire ant Solenopsis invicta: ergonomic considerations of correlations between temperature, size and metabolic rates. J Insect Physiol 35:643–649

    Google Scholar 

  • Calabi P, Traniello JFA (1989a) Social organization in the ant Pheidole dentata: physical and temporal caste ratios lack ecological correlates. Behav Ecol Sociobiol 24:69–78

    Google Scholar 

  • Calabi P, Traniello JFA (1989b) Behavioral flexibility in age castes of the ant Pheidole dentata. J Insect Behav 2:663–677

    Google Scholar 

  • Calleri DV, McGrail Reid E, Rosengaus RB, Vargo EL, Traniello JFA (2006) Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc Lond B 273:2633–2640

    Google Scholar 

  • Cao TT (2013) High social density increases foraging and scouting rates and induces polydomy in Temnothorax ants. Behav Ecol Sociobiol 67:1799–1807

    Google Scholar 

  • Cassill D (2002) Yoyo-bang: a risk-aversion investment strategy by a perennial insect society. Oecologia 132:150–158

    Google Scholar 

  • Cassill DL, Tschinkel WR (1995) Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim Behav 50:801–813

    Google Scholar 

  • Cassill DL, Tschinkel WR (1999) Effects of colony-level attributes on larval feeding in the fire ant, Solenopsis invicta. Insect Soc 46:261–266

    Google Scholar 

  • Chapuisat M, Keller L (2002) Division of labour influences the rate of ageing in weaver ant workers. Proc R Soc Lond B 269:909–913

    Google Scholar 

  • Cole BJ (1983) Multiple mating and the evolution of social behavior in the Hymenoptera. Behav Ecol Sociobiol 12:191–201

    Google Scholar 

  • Cole BJ (2009) The ecological setting of social evolution: the demography of ant populations. In: Fewell JH, Gadau J (eds) New frontiers for behavioral ecology: from gene to society. Harvard University Press, pp 74–104

  • Conradt L, Roper TJ (2005) Consensus decision making in animals. Trends Ecol Evol 20:449–456

    PubMed  Google Scholar 

  • Constant N, Santorelli LA, Lopes JFS, Hughes WOH (2012) The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav Ecol 23:1284–1288

    Google Scholar 

  • Couzin ID (2009) Collective cognition in animal groups. Trends Cogn Sci 13:36–43

    PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    CAS  PubMed  Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702

    CAS  PubMed  Google Scholar 

  • Crozier RH, Page RE (1985) On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol 18:105–115

    Google Scholar 

  • Crozier RH, Newey PS, Schlüns EA, Robson SKA (2010) A masterpiece of evolution—Oecophylla weaver ants (Hymenoptera: Formicidae). Myrmecol News 13:57–71

    Google Scholar 

  • den Boer SPA, Baer B, Dreier S, Aron S, Nash DR, Boomsma JJ (2009) Prudent sperm use by leaf-cutter ant queens. Proc R Soc Lond B 276:3945–3953

    Google Scholar 

  • Donaldson-Matasci MC, DeGrandi-Hoffman G, Dornhaus A (2013) Bigger is better: honeybee colonies as distributed information-gathering systems. Anim Behav 85:585–592

    Google Scholar 

  • Dornhaus A, Holley J-A, Pook VG, Worswick G, Franks NR (2008) Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behav Ecol Sociobiol 63:43–51

    Google Scholar 

  • Dornhaus A, Holley J-A, Franks NR (2009) Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav Ecol 20:922–929

    Google Scholar 

  • Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Annu Rev Entomol 57:123–141

    CAS  PubMed  Google Scholar 

  • Duarte A, Weissing FJ, Pen I, Keller L (2011) An evolutionary perspective on self-organized division of labor in social insects. Ann Rev Ecol Evol Syst 42:91–110

    Google Scholar 

  • Dukas R, Dukas L (2011) Coping with nonrepairable body damage: effects of wing damage on foraging performance in bees. Anim Behav 81:635–638

    Google Scholar 

  • Eelen D, Børgesen L, Billen J (2006) Functional morphology of the postpharyngeal gland of queens and workers of the ant Monomorium pharaonis (L.). Acta Zool 87:101–111

    Google Scholar 

  • Fefferman NH, Traniello JFA, Rosengaus RB, Calleri DV (2007) Disease prevention and resistance in social insects: modeling the survival consequences of immunity, hygienic behavior, and colony organization. Behav Ecol Sociobiol 61:565–577

    Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc Lond B 276:2263–2269

    Google Scholar 

  • Ferrari R, Gonzalez-Rivero M, Mumby P (2012) Size matters in competition between corals and macroalgae. Mar Ecol Prog Ser 467:77–88

    Google Scholar 

  • Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Finch CE (1998) Variations in senescence and longevity include the possibility of negligible senescence. J Gerontol 53A:B235–B239

    Google Scholar 

  • Finch CE (2009) Update on slow aging and negligible senescence—a mini-review. Gerontology 55:307–313

    PubMed  Google Scholar 

  • Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400

    PubMed  Google Scholar 

  • Flanagan TP, Letendre K, Burnside WR, Fricke GM, Moses ME (2012) Quantifying the effect of colony size and food distribution on harvester ant foraging. PLoS ONE 7:e39427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forsyth A (1978) Studies on the behavioral ecology of polygynous social wasps. Dissertation, Harvard University

  • Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003) Speed versus accuracy in collective decision making. Proc R Soc Lond B 270:2457–2463

    Google Scholar 

  • Franks NR, Dornhaus A, Best CS, Jones EL (2006) Decision making by small and large house-hunting ant colonies: one size fits all. Anim Behav 72:611–616

    Google Scholar 

  • Gao Q, Bidochka MJ, Thompson GJ (2012) Effect of group size and caste ratio on individual survivorship and social immunity in a subterranean termite. Acta Ethol 15:55–63

    Google Scholar 

  • Garcia MB, Dahlgren JP, Ehrlén J (2011) No evidence of senescence in a 300-year-old mountain herb. J Ecol 99:1424–1430

    Google Scholar 

  • Gordon DM (1989) Dynamics of task switching in harvester ants. Anim Behav 38:194–204

    Google Scholar 

  • Gordon DM, Mehdiabadi NJ (1999) Encounter rate and task allocation in harvester ants. Behav Ecol Sociobiol 45:370–377

    Google Scholar 

  • Gordon DM, Chu J, Lillie A, Tissot M, Pinter N (2005) Variation in the transition from inside to outside work in the red harvester ant Pogonomyrmex barbatus. Insect Soc 52:212–217

    Google Scholar 

  • Hara K (2003) Queen discrimination ability of ant workers (Camponotus japonicus) coincides with brain maturation. Brain Behav Evol 62:56–64

    PubMed  Google Scholar 

  • Hartmann A, Heinze J (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution 57:2424–2429

    PubMed  Google Scholar 

  • Heinze J, Schrempf A (2008) Aging and reproduction in social insects—a mini-review. Gerontology 54:160–167

    PubMed  Google Scholar 

  • Heinze J, Walter B (2010) Moribund ants leave their nests to die in social isolation. Curr Biol 20:249–252

    CAS  PubMed  Google Scholar 

  • Herbers JM (1986) Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav Ecol Sociobiol 19:115–122

    Google Scholar 

  • Holbrook CT, Barden PM, Fewell JH (2011) Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus. Behav Ecol 22:960–966

    Google Scholar 

  • Holbrook CT, Eriksson TH, Overson RP, Gadau J, Fewell JH (2013) Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect Soc 60:191–201

    Google Scholar 

  • Hölldobler B, Wilson EO (1978) The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behav Ecol Sociobiol 3:19–60

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Hughes WOH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260

    PubMed  Google Scholar 

  • Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc Lond B 269:1811–1819

    Google Scholar 

  • Jeanson R, Fewell JH, Gorelick R, Bertram SM (2007) Emergence of increased division of labor as a function of group size. Behav Ecol Sociobiol 62:289–298

    Google Scholar 

  • Jemielity S, Chapuisat M, Parker JD, Keller L (2005) Long live the queen: studying aging in social insects. Age 27:241–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamhi JF, Traniello JFA (2013) Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav Evol 82:220–236

    PubMed  Google Scholar 

  • Kaptein N, Billen J, Gobin B (2005) Larval begging for food enhances reproductive options in the ponerine ant Gnamptogenys striatula. Anim Behav 69:293–299

    Google Scholar 

  • Kaspari M (1993) Removal of seeds from neotropical frugivore droppings: ant responses to seed number. Oecologia 95:81–88

    Google Scholar 

  • Kaspari M, Vargo E (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610–632

    Google Scholar 

  • Keeler KH (1993) Fifteen years of colony dynamics in Pogonomyrmex occidentalis, the western harvester ant, in western Nebraska. Southwest Nat 38:286–289

    Google Scholar 

  • Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insect Soc 45:235–246

    Google Scholar 

  • Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389:3–6

    Google Scholar 

  • Kern MJ (1985) Metabolic rate of the insect brain in relation to body size and phylogeny. Comp Biochem Physiol A 81A:501–506

    Google Scholar 

  • Kern M, Wegener G (1984) Age affects the metabolic rate of insect brain. Mech Ageing Dev 28:237–242

    CAS  PubMed  Google Scholar 

  • Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304

    CAS  PubMed  Google Scholar 

  • Kirkwood TBL, Melov S (2011) On the programmed/non-programmed nature of ageing within the life history. Curr Biol 21:R701–R707

  • Kramer BH, Schaible R (2013) Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biol J Linn Soc 109:710–724

    Google Scholar 

  • Kramer BH, Scharf I, Foitzik S (2014) The role of per-capita productivity in the evolution of small colony sizes in ants. Behav Ecol Sociobiol 68:41–53

    Google Scholar 

  • Kronauer DJC, Johnson RA, Boomsma JJ (2007) The evolution of multiple mating in army ants. Evolution 61:413–422

    PubMed  Google Scholar 

  • Kwapich CL, Tschinkel WR (2013) Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 67:2011–2027

    Google Scholar 

  • Lacey EA, Sherman PW (1991) Social organization of naked mole-rat colonies: evidence for division of labor. In: Sherman PW, Jarvis JUM, Alexander R (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 275–336

    Google Scholar 

  • Lee RD (2003) Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proc Natl Acad Sci U S A 100:9637–9642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenoir A (1979) Le comportement alimentaire et la division du travail chez la fourmi Lasius niger (L.). Bull Biol Fr Belg 113:79–314

    Google Scholar 

  • Lewis KN, Mele J, Hornsby PJ, Buffenstein R (2012) Stress resistance in the naked mole-rat: the bare essentials—a mini-review. Gerontology 58:453–462

    PubMed  Google Scholar 

  • Libbrecht R, Oxley PR, Kronauer DJ, Keller L (2013) Ant genomics sheds light on the molecular regulation of social organization. Genome Biol 14:212

    PubMed Central  PubMed  Google Scholar 

  • London KB, Jeanne RL (2003) Effects of colony size and stage of development on defense response by the swarm-founding wasp Polybia occidentalis. Behav Ecol Sociobiol 54:539–546

    Google Scholar 

  • Lopes JFS, Hughes WOH, Camargo RS, Forti LC (2005) Larval isolation and brood care in Acromyrmex leaf-cutting ants. Insect Soc 52:333–338

    Google Scholar 

  • Lucas E, Keller L (2014) Ageing and somatic maintenance in social insects. Curr Op Insect Sci. (published online, doi:10.1016/j.cois.2014.09.009)

  • Medawar PB (1952) An unsolved problem of biology. H. K. Lewis, London

    Google Scholar 

  • Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093

    CAS  PubMed  Google Scholar 

  • Morand-Ferron J, Quinn JL (2011) Larger groups of passerines are more efficient problem solvers in the wild. Proc Natl Acad Sci U S A 108:15898–15903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    CAS  PubMed  Google Scholar 

  • Moroń D, Lenda M, Skórka P, Woyciechowski M (2012) Short-lived ants take greater risks during food collection. Am Nat 180:744–750

    PubMed  Google Scholar 

  • Münch D, Amdam GV (2010) The curious case of aging plasticity in honey bees. FEBS Lett 584:2496–2503

    PubMed  Google Scholar 

  • Münch D, Amdam GV, Wolschin F (2008) Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee. Funct Ecol 22:407–421

    PubMed Central  PubMed  Google Scholar 

  • Muscedere ML, Willey TA, Traniello JFA (2009) Age and task efficiency in the ant Pheidole dentata: young minor workers are not specialist nurses. Anim Behav 77:911–918

    Google Scholar 

  • Muscedere ML, Traniello JFA, Gronenberg W (2011) Coming of age in an ant colony: cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften 98:783–793

    CAS  PubMed  Google Scholar 

  • Muscedere ML, Johnson N, Gillis BC, Kamhi JF, Traniello JFA (2012) Serotonin modulates worker responsiveness to trail pheromone in the ant Pheidole dentata. J Comp Physiol A 198:219–227

    CAS  Google Scholar 

  • Muscedere ML, Djermoun A, Traniello JFA (2013) Brood-care experience, nursing performance, and neural development in the ant Pheidole dentata. Behav Ecol Sociobiol 67:775–784

    Google Scholar 

  • Nussey DH, Froy H, Lemaitre J-F, Gaillard J-M, Austad SN (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res Rev 12:214–225

    PubMed  Google Scholar 

  • O’Donnell S, Bulova SJ (2007) Worker connectivity: a simulation model of variation in worker communication and its effects on task performance. Insect Soc 54:211–218

    Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Parker JD (2010) What are social insects telling us about aging? Myrmecol News 13:103–110

    Google Scholar 

  • Partridge L, Gems D (2006) Beyond the evolutionary theory of ageing, from functional genomics to evo-gero. Trends Ecol Evol 21:334–340

    PubMed  Google Scholar 

  • Passera L, Roncin E, Kaufmann B, Keller L (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–631

    CAS  Google Scholar 

  • Pie MR, Rosengaus RB, Traniello JFA (2004) Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J Theor Biol 226:45–51

    PubMed  Google Scholar 

  • Porter SD, Jorgensen CD (1981) Foragers of the harvester ant, Pogonomyrmex owyheei: a disposable caste? Behav Ecol Sociobiol 9:247–256

    Google Scholar 

  • Porter SD, Tschinkel WR (1985) Fire ant polymorphism: the ergonomics of brood production. Behav Ecol Sociobiol 16:323–336

    Google Scholar 

  • Porter SD, Tschinkel WR (1986) Adaptive value of nanitic workers in newly founded red imported fire ant colonies (Hymenoptera: Formicidae). Ann Entomol Soc Am 79:723–726

    Google Scholar 

  • Poulsen M, Bot ANM, Nielsen MG, Boomsma JJ (2002) Experimental evidence for the costs and hygienic significance of the antibiotic metapleural ants gland secretion in leaf-cutting ants. Behav Ecol Sociobiol 52:151–157

    Google Scholar 

  • Powell S (2011) How much do army ants eat? On the prey intake of a neotropical top-predator. Insect Soc 58:317–324

    Google Scholar 

  • Pratt S, Mallon E, Sumpter D, Franks N (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52:117–127

    Google Scholar 

  • Purcell J, Brütsch T, Chapuisat M (2011) Effects of the social environment on the survival and fungal resistance of ant brood. Behav Ecol Sociobiol 66:467–474

    Google Scholar 

  • Rauser CL, Mueller LD, Rose MR (2006) The evolution of late life. Ageing Res Rev 5:14–32

    PubMed  Google Scholar 

  • Remolina SC, Hafez DM, Robinson GE, Hughes KA (2007) Senescence in the worker honey bee Apis mellifera. J Insect Physiol 53:1027–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ricklefs RE (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am Nat 152:24–44

    CAS  PubMed  Google Scholar 

  • Ridley M (1993) Clutch size and mating frequency in parasitic Hymenoptera. Am Nat 142:893–910

    Google Scholar 

  • Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37:637–665

    CAS  PubMed  Google Scholar 

  • Robinson GE, Page R Jr, Huang Z (1994) Temporal polyethism in social insects is a developmental process. Anim Behav 48:467–469

    Google Scholar 

  • Robinson EJH, Feinerman O, Franks NR (2009) Flexible task allocation and the organization of work in ants. Proc R Soc Lond B 276:4373–4380

    Google Scholar 

  • Robinson EJH, Feinerman O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659

    PubMed  Google Scholar 

  • Robson SK, Beshers SN (1997) Division of labour and “foraging for work”: simulating reality versus the reality of simulations. Anim Behav 53:214–218

    Google Scholar 

  • Rosengaus RB, Traniello JFA (2001) Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav Ecol Sociobiol 50:546–556

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Google Scholar 

  • Rueppell O (2009) Aging of social insects. In: Gadeau J, Fewell J, Wilson EO (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, pp 51–73

    Google Scholar 

  • Rueppell O, Bachelier C, Fondrk MK, Page RE (2007a) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp Gerontol 42:1020–1032

    PubMed Central  PubMed  Google Scholar 

  • Rueppell O, Christine S, Mulcrone C, Groves L (2007b) Aging without functional senescence in honey bee workers. Curr Biol 17:R274–R275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rueppell O, Kaftanouglu O, Page RE (2009) Honey bee (Apis mellifera) workers live longer in small than large colonies. Exp Gerontol 44:447–452

    PubMed Central  PubMed  Google Scholar 

  • Rueppell O, Hayworth MK, Ross NP (2010) Altruistic self-removal of health-compromised honey bee workers from their hive. J Evol Biol 23:1538–1546

    CAS  PubMed  Google Scholar 

  • Scharf I, Modlmeier AP, Beros S, Foitzik S (2012) Ant societies buffer individual-level effects of parasite infections. Am Nat 180:671–683

    PubMed  Google Scholar 

  • Schmid-Hempel P (1983) Foraging ecology and colony structure of two sympatric species of desert ants Cataglyphis bicolor and Cataglyphis albicans. Dissertation, Universität Zürich

  • Schmid-Hempel P (1992) Worker castes and adaptive demography. J Evol Biol 5:1–12

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Schmid-Hempel P, Schmid-Hempel R (1984) Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insect Soc 31:345–360

    Google Scholar 

  • Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61–66

    Google Scholar 

  • Schofield RMS, Emmett KD, Niedbala JC, Nesson MH (2011) Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behav Ecol Sociobiol 65:969–982

    Google Scholar 

  • Schrempf A, Cremer S, Heinze J (2011) Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies. J Evol Biol 24:1455–1461

    CAS  PubMed  Google Scholar 

  • Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187:53–61

    CAS  PubMed  Google Scholar 

  • Sebens KP (1987) The ecology of indeterminant growth in animals. Annu Rev Ecol Syst 18:371–407

    Google Scholar 

  • Seid MA, Traniello JFA (2005) Age-related changes in biogenic amines in individual brains of the ant Pheidole dentata. Naturwissenschaften 92:198–201

    CAS  PubMed  Google Scholar 

  • Seid MA, Traniello JFA (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60:631–644

    Google Scholar 

  • Sendova-Franks A, Franks NR (1993) Task allocation in ant colonies within variable environments (a study of temporal polyethism: experimental). Bull Math Biol 55:75–96

    Google Scholar 

  • Sendova-Franks AB, Franks NR (1995) Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for division of labor. Anim Behav 50:121–136

    Google Scholar 

  • Shahrestani P, Mueller LD, Rose MD (2009) Does aging stop? Curr Aging Sci 2:3–11

    PubMed  Google Scholar 

  • Shik JZ (2008) Ant colony size and the scaling of reproductive effort. Funct Ecol 22:674–681

    Google Scholar 

  • Shik JZ (2010) The metabolic costs of building ant colonies from variably sized subunits. Behav Ecol Sociobiol 64:1981–1990

    Google Scholar 

  • Shik JZ, Hou C, Kay A, Kaspari M, Gillooly JF (2012) Towards a general life-history model of the superorganism: predicting the survival, growth and reproduction of ant societies. Biol Lett 8:1059–1062

    PubMed Central  PubMed  Google Scholar 

  • Simons AM (2004) Many wrongs: the advantage of group navigation. Trends Ecol Evol 19:453–455

    PubMed  Google Scholar 

  • Smith AR, Muscedere ML, Seid MA, Traniello JFA, Hughes WOH (2013) Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior. J Comp Physiol A 199:1117–1127

    CAS  Google Scholar 

  • Tanner CJ (2006) Numerical assessment affects aggression and competitive ability: a team-fighting strategy for the ant Formica xerophila. Proc R Soc Lond B 273:2737–2742

    Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc Lond B 270:99–103

    Google Scholar 

  • Thomas ML, Elgar MA (2003) Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90:88–92

    CAS  PubMed  Google Scholar 

  • Tofilski A (2000) Senescence and learning in honeybee (Apis mellifera) workers. Acta Neurobiol Exp 60:35–39

    CAS  Google Scholar 

  • Tofts C, Franks NR (1992) Doing the right thing: ants, honeybees and naked mole-rats. Trends Ecol Evol 7:346–349

    CAS  PubMed  Google Scholar 

  • Toth AL, Robinson GE (2007) Evo-devo and the evolution of social behavior. Trends Genet 23:334–341

    CAS  PubMed  Google Scholar 

  • Traniello JFA, Rosengaus RB (1997) Ecology, evolution and division of labour in social insects. Anim Behav 53:209–213

    Google Scholar 

  • Traniello IM, Sîrbulescu RF, Ilieş I, Zupanc GKH (2013) Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol 74:514–530

    PubMed  Google Scholar 

  • Tschinkel WR (1987) Fire ant queen longevity and age: estimation by sperm depletion. Ann Entomol Soc Am 80:263–266

    Google Scholar 

  • Tschinkel WR (1988) Social control of egg-laying rate in queens of the fire ant, Solenopsis invicta. Physiol Entomol 13:327–350

    Google Scholar 

  • Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Monogr 63:425–457

    Google Scholar 

  • Tsuji K, Nakata K, Heinze J (1996) Lifespan and reproduction in a queenless ant. Naturwissenschaften 83:577–578

    CAS  Google Scholar 

  • Turon X, Becerro MA (1992) Growth and survival of several ascidian species from the northwest Mediterranean. Mar Ecol Prog Ser 82:235–247

    Google Scholar 

  • Ugelvig LV, Kronauer DJC, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc Lond B 277:2821–2828

    Google Scholar 

  • Vance JT, Williams JB, Elekonich MM, Roberts SP (2009) The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. J Exp Biol 212:2604–2611

    PubMed Central  PubMed  Google Scholar 

  • Vaquero A, Reinberg D (2009) Calorie restriction and the exercise of chromatin. Genes Dev 23:1849–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vargo EL (1988) Effect of pleometrosis and colony size on the production of sexuals in monogyne colonies of the fire ant Solenopsis invicta. In: Trager JC (ed) Advances in myrmecology. E. J. Brill, New York, pp 217–225

    Google Scholar 

  • Walker J, Stamps J (1986) A test of optimal caste ratio theory using the ant Camponotus (Colobopsis) impressus. Ecology 67:1052–1062

    Google Scholar 

  • Wehner R, Meier C, Zollikofer C (2004) The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol Entomol 29:240–250

    Google Scholar 

  • Weier J, Feener D (1995) Foraging in the seed-harvester ant genus Pogonomyrmex: are energy costs important? Behav Ecol Sociobiol 36:291–300

    Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Google Scholar 

  • Williams GC (1999) The Tithonus error in modern gerontology. Q Rev Biol 74:405–415

    CAS  PubMed  Google Scholar 

  • Williams JB, Roberts SP, Elekonich MM (2008) Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp Gerontol 43:538–549

    CAS  PubMed  Google Scholar 

  • Wilson EO (1959) Some ecological characteristics of ants in New Guinea rain forests. Ecology 40:437–447

    Google Scholar 

  • Wilson EO (1971) The insect societies. Oxford University Press, London

    Google Scholar 

  • Wilson EO (1976a) Behavioral discretization and the number of castes in an ant species. Behav Ecol Sociobiol 154:141–154

    Google Scholar 

  • Wilson EO (1976b) The organization of colony defense in the ant Pheidole dentata Mayr (Hymenoptera: Formicidae). Behav Ecol Sociobiol 1:63–81

    Google Scholar 

  • Wilson EO (1983a) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): IV. Colony ontogeny of A. cephalotes. Behav Ecol Sociobiol 14:55–60

    Google Scholar 

  • Wilson EO (1983b) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): III. Ergonomic resiliency in foraging by A. cephalotes. Behav Ecol Sociobiol 14:47–54

    Google Scholar 

  • Wilson EO (1985) The sociogenesis of insect colonies. Science 228:1489–1495

    CAS  PubMed  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    CAS  PubMed  Google Scholar 

  • Wolf H (2008) Desert ants adjust their approach to a foraging site according to experience. Behav Ecol Sociobiol 62:415–425

    Google Scholar 

  • Yang AS (2006) Seasonality, division of labor, and dynamics of colony-level nutrient storage in the ant Pheidole morrisi. Insect Soc 53:456–462

    Google Scholar 

  • Yang AS, Martin CH, Nijhout HF (2004) Geographic variation of caste structure among ant populations. Curr Biol 14:514–519

    CAS  PubMed  Google Scholar 

  • Yek SH, Mueller UG (2011) The metapleural gland of ants. Biol Rev Camb Philos Soc 86:774–791

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Mario Muscedere, Wulfila Gronenberg, Kimberly McCall, and Karen Warkentin, as well as two anonymous reviewers and Dr. Olav Rueppell, for their critical reading of the manuscript. Andrew Hoadley, J. Frances Kamhi, Darcy G. Gordon, and Jake Uminski provided helpful discussions and suggestions. YMG was supported by the National Institute on Aging of the National Institutes of Health (grant F31AG041589) and the National Science Foundation (grant IOB 0725013; JFT sponsor for both awards). The work presented here is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ysabel Milton Giraldo.

Additional information

Communicated by O. Rueppell

This paper is dedicated to the memory of Professor Henry Hagedorn, mentor, colleague, and friend, and his generous spirit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldo, Y.M., Traniello, J.F.A. Worker senescence and the sociobiology of aging in ants. Behav Ecol Sociobiol 68, 1901–1919 (2014). https://doi.org/10.1007/s00265-014-1826-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-014-1826-4

Keywords

Navigation